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1 Introduction

Connected and autonomous vehicles (CAV) are equipped with numerous sensors
and therefore capable today of detecting obstacles and understanding a scene
thanks in particular to advanced machine learning and the increasing computing
power. However, in many situations, automated vehicles alone are not able to
detect and to predict upcoming difficulties, especially when obstacles ares hidden
in complex area like junctions, roundabouts or L-turn. In these situations, it
is interesting to be able to improve and extend the perception ability of CAV by
developing the collaboration between vehicles, other connected users and infrastructure.
Roadside sensors can provide valuable information to CAV to predict difficulties
and to update the vehicles trajectories planning when unconnected vehicles and
vulnerable road users are close.

In order to make collaboration possible between different users, V2X communication
systems are being developed and since the last decade, a great number of research
activities have been conducted on Cooperative ITS(C-ITS) to improve road safety
and traffic efficiency. The deployment of V2X communication systems and large-
scale test projects have been launched across Europe (Scoop@QF, C-Roads, InDiD,
PAC V2X, MAVEN) but also in the United States, Japan [20] or China. Furthermore
Standardization organizations such as the European Telecommunication Standards
Institute (ETSI) and Car-2-Car Communication Consortium (C2C-CC) now provide
specifications of V2X communications protocols and C-ITS services using both
connected vehicles and roadside units (RSU) as interacting agent to implement
these services. The connected vehicles are able to exchange information about
their states such as the position or the velocity or what they locally perceive
through collective awareness messages (CAM) or collective perception messages
(CPM) and by gathering all these collaborative information, the connected vehicles
can construct a Local Dynamic Map (LDM) to have an extended view of their
environment.

Tornado project aims to develop a secured autonomous vehicles system by
including intelligent roadside perception that is capable of broadcasting in real
time local information to the CAVs in low density and peri-urban areas. Within the
Tornado project, we are developing the intelligent roadside perception that is used
in sparse area where, generally, the roads are narrow and the visibility conditions
are poor. For this project, the experiments are carried out in partnership and with
the support of Rambouillet Territoire and its Mobility Living Lab in the Bel-Air
business area. Some important use cases are identified for this area: a narrow
passage under the bridge crossing, the roundabout crossing and pedestrians and
autonomous shuttle interaction situation.

The outline of this report is the following:



e The Tornado project for autonomous vehicles on sparsely populated and
peri-urban area,

o The cooperative driving and ETSI standards

o The camera based perception system for roundabout crossing and pedestrians
and autonomous shuttle interaction situation

e The Narrow zone passage

2 Tornado autonomous vehicles on sparsely populated
and peri-urban area project

Many experimentation initiatives and projects on connected and autonomous vehicles
(CAV) are being conducted in France and all around the world. However, Tornado
project differs from other identified so far by proposing for the first time to conduct
experiments on CAV that promote the multimodal mobility in sparsely populated,
rural and peri-urban areas and to rely on the community of users from the living
lab of the Rambouillet territory. The infrastructure in these areas are usually too
basic and too poorly maintained to be used by a CAV without any improvement
of the road. In the project, it is planned to test

1. CAVs at normal speed (up to 70km/h) connecting the Gazeran train station
to the Bel-Air shopping area,

2. shuttles in the shopping center’s car park where the shuttle and shopping
customers share the same space.

For the CAVs testing, both Renault and the Université Technologie de Compiegne
(UTC) have developed their driving control algorithms and their prototype based
on the ZOE cars. During the route from the Gazeran train station to the Bel-Air
shopping area, the CAVs have to cross narrow rural roads, and some roundabouts
where the visibility conditions are very poor. To assist the CAVs to cross the
unsignalized intersections, we developed within the project the connected roadside
perception systems that broadcast real-time information to the CAVs. Another use
case studied in the Tornado project is to improve the mobility of the customers
of the shopping area, who left their vehicle in the Gazeran train station car park
by using autonomous shuttle operated in a shared space or living street. The
Autonomous shuttles will meet pedestrians with or without shopping trolleys,
cyclists, cars or delivery trucks along their route. By broadcasting the information
on the perceived road users, their categories, and their occupied spaces, the RSU
will enhance the shuttles security by extending the perceived area of the shuttles.
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The figure 1 shows the roundabout selected for the experimentation and the figure 2
shows the shared space near the drive-through of the Carrefour supermarket
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Figure 2: Part of the shared space used by the autonomous shuttle.



3 ETSI Standards for Vehicles Communication

In this document we provide a detailed explanation of the main standards used to
achieve vehicular communication in the autonomous vehicles domain. In particular,
we focus the attention on the European standard ETSI for vehicle communication.
During the document, we detailed the main types of messages contained in this
standard and we also provide a brief comparison with the American SAE standard.
Moreover, we discuss in detail the format and the contents of the cooperative
perception message (CPM) providing an evaluation about the relevance of its
different fields to our [2V communication use cases.

3.1 Cooperative driving

Cooperation in autonomous driving is an emerging technology that is looking at
to enhancing the performance of autonomous vehicles by means of cooperation
in Intelligent Transportation Systems (ITS). In order to implement cooperation,
it is required to share information between road users. Vehicular communication
is one of the most important means to share such information among several
users. Moreover, the communication can be implemented not only between road
users, but also between road users and Road Side Units (RSU) in both directions.
The aim of this section is to present an overview of the existing standards used
in vehicular communications. Furthermore, we analyze also the application of
such communication standards to ensure the exchange of information with an
intelligent infrastructure in order to ensure safe navigation. In particular, we
focus on the necessary information and its format that RSUs and self-driving cars
have to exchange to achieve enhanced perception.

There exists in the literature a wide range of scenarios that take advantage of
inter-vehicle communication. All these cases can be grouped into three principal
subsets:

o Safety-oriented: These applications aim to ensure driving safety. This
imposes many constraints on the communication standards as for example
real time constraints, low message latency and low messages loss rates.
In general, the aim of these applications is to make cars exchange data
about their current status, their perceived environment and the notification
of a perturbing event. Exchanging such information between cars in a
road network can provide to single cars a global and enhanced view of
the surrounding environment that a driver in general cannot have. Some
examples of that are the possibility of seeing cars in bad weather conditions,
the advertising of traffic jams and car accidents on the road, enhancing
a vehicle perception on cluttered environments and blind spots and the
advertising of the presence of an incoming emergency vehicle.



o Traffic-Control Oriented: These applications are not related to safety.
However, exchanging information about the vehicle’s positions can help in
individuating the zones with traffic congestion giving a global view about the
traffic. This can be used to regulate the traffic in function of the traffic jams.
A typical use case is a smart traffic light manager that collects information
about the queues of cars that are waiting to pass and regulates the passage
minimizing the waiting time.

o User-Comfort Oriented: These applications are oriented at providing
services that a user can enjoy while he is driving on the car. Some examples
are the possibility of downloading movies or music during a trip. All these
cases have the basic requirement of having access to the internet.

3.2 ETSI Standard

In Europe, the first experiments to achieve vehicular communication started around

1980. Before that date, several projects had been launched to achieve cooperation

among communicating devices. The standards to achieve these tasks have been
developed by the European Standardization Union (ESOs), the European Telecommunication
Standards Institute (ETSI) and the Comité Européen de Normalisation (CEN).

This standardization covers all types of transportation systems and also infrastructure

based systems as the tolling systems. The standardization is driven by the Car-

2-Car Communication Consortium (C2C-CC), which is an industry consortium of
automobile manufacturers that signed an agreement to introduce the standard in

Furope since 2015.

The ETSI ITS standard is based on the concept of I'TS station. An ITS station
can be a connected vehicle, a person with a connected device, or a communicating
roadside unit. In the United States, another standard called WAVE has been
developed. Figure 3 shows the architecture of the ETSI standard compared with
the WAVE architecture. The access technologies layer primarily utilizes a specific
set of options of the IEEE 802.11 standard, that is, ITS-G5 (where G5 stands
for 5 GHz). In the United States, this set is named Wireless Access in Vehicular
Environment (WAVE), formerly referred to as the IEEE 802.11p amendment and
now integrated into the IEEE 802.11-2012 standard release. The European variant,
ITS-G5, is derived from WAVE and adapted to European requirements.

On the top of the network and transport layer, there are the standards for
application-oriented vehicular communication. Among these facilities, there are
two services for cooperative communication. The CAM protocol conveys critical
vehicle state information in support of safety and traffic efficiency applications.
This is useful because receiving vehicles can track other vehicles positions and
movements. The DENM protocol disseminates event-driven safety information in
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Figure 3: Architecture of ITS ETSI standard compared with the WAVE
architecture. Figure from [2]

a geographical region.

Finally, the new Cooperative Perception Message (CPM) protocol (which is
not present in Figure 3 because it has been recently introduced) allows vehicles to
exchange information about their perceived environment. This is useful to enhance
on board sensors’ fields of view and to obtain an extended and more consistent
representation of the driving environment. It will be presented below.

From Figure 3, one can see that the upper layer facilities are implemented by
the CAM and DENM (and CPM) protocols for the ITS-G5 standard, while for
the WAVE standard there are the BSM and SAE. Regarding the lowest layers, we
can say that the standards are very similar in both versions.

Let us briefly show the contents of the SAE standard. We do not provide
details about the lower level architecture of the system, because we are interested
in analyzing and comparing only the services provided by higher level application
levels. In particular, we are interested in the SAE J2735 standard that specifies the
dictionary for the Base Safety Message (BSM) which is used to achieve the main
tasks about navigation safety. Figure 4 shows the messages list available on SAE
J2735 standard, while Figure 5 displays the contents of a BSM. It is easy to see
that there exist similarities between the European and the American Standards.
A brief explanation of the most important messages reported in Figure 4 is given
hereafter:

« Basic Safety message: a message that is constantly exchanged between
the neighboring vehicles to inform all the other I'TS about the presence of a
vehicle.
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Figure 4: A list of different messages contained into the J2735 standard. Notice
that several messages correspond to the same use cases of ETSI. Figure taken from

[1].

A la carte message: a message customizable by the user which allows

flexibility in data representation.

Emergency vehicle alert message: used to broadcast warnings to the
surrounding vehicles of an emergency vehicle operating in the neighborhood.

Generic transfer message: a basic means to exchange data between a
vehicle and the roadside unit.

Common safety request message: used when a vehicle that exchanges
BSM needs to make specific requests to other vehicles for additional information

about safety applications.
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Figure 5: The payload of a BSM message. Figure taken from [1].

3.3 Cooperative Awareness Messages (CAM)

To provide cooperative awareness between several communicating road entities, a
Cooperative Awareness Service has been implemented. The standard is defined
into the ETSI EN 302 637-2 document [3]. This standard can be applied to
every road vehicle (cars, motorbikes, truck, etc....), to pedestrians and to roadside
infrastructure units (intelligent traffic lights, barriers, tolls, etc.). To implement
cooperative awareness, the information to be shared is exchanged by means of the
Cooperative Awareness Message (CAM). To implement this, every road user has
to exchange information about its status. On reception of a CAM, the receiving
user becomes aware of the existence of the sending one and its current status.
Several use cases for this service are present in literature, as it is explained in [2].

3.3.1 CAM Generation Frequency

To implement the cooperative awareness service, it is important to update periodically
the status of the surrounding environment. For safety critical scenarios, the
evolution of the driving situation is highly dynamic. To achieve this, the CAM
standard proposes some constraints:

o The CAM generation interval should not be inferior to 100 ms (10 Hz).
o The CAM generation interval should not be superior to 1000 ms (1 Hz).

The upper bound limit of 10 Hz has been chosen to avoid network saturation and
bottlenecks that can be caused by multiple sending of several road agents.
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Container Container ‘ .
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Vehicle HF Vehicle LF
Container or Container or Special Transport Container
or
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(not yet defined)

Figure 6: The format of an ETSI CAM message. Figure taken from [2]

3.3.2 CAM Messages Format

CAM is composed of a “ITS-PDU” header and several containers, which together
constitutes a CAM. The ITS PDU header is a common header that includes the
information of the protocol version, the message type and the user ID of the
originating user. Figure 6 illustrates the structure of a CAM.

To successfully implement cooperative awareness, a CAM must include at least
one basic container and one high frequency container. It can also have one low
frequency container, and one or more special vehicle container:

o The basic container includes basic information related to the originating user.

o The high frequency container contains highly dynamic information of the
originating user.

o The low frequency container contains static and not highly dynamic information
of the originating user.

o The special vehicle container contains information specific to the vehicle role
of the originating vehicle user.

3.3.3 CAM Payload Description

Let us see the information necessary to implement the CAM basic services. In this
part, we also decided to assign a color to each field of the payload. Such colors are
assigned to fields according to the criteria explained in Table 1. Colors are assigned
to each field in order to specify the importance of every piece of information in
the context of a safety-critical autonomous vehicle navigation application. The
following table 1 explains the meanings of each color.

11



Red High priority information Used to highlight information that is
necessary to develop an application for road
safety.

Yellow | Middle priority information | Used to have some information that is not
considered necessary to implement
safety-oriented applications. However, it can
be useful to have its knowledge.
Green Low priority information This information is not considered relevant
for our use case. It can be eventually erased
to make space for other more relevant fields.

Blue High priority information Used to highlight information that is
necessary to develop an application for road
safety. However, this information is, in
general, hard to compute

Table 1: Classification criteria for messages fields w.r.t. our use-case application.

R Timestamp Time corresponding to the time of the
reference position in the CAM, considered as
time of the CAM generation.

3.3.3.1 CoopAwareness Container This container is the global container
that also contains the information of the message generation time.

3.3.3.2 Basic Container This container provides basic information about the
station. The following table explains in detail the contents of this container.

’ Importance \ Field Name \ Description
R Station Station type of the originating user.
Type
R Reference | Position and position accuracy measured at the reference
Position point of the originating user. The measurement time

shall correspond to generationDeltaTime. The
positionConfidenceEllipse provides the accuracy of the
measured position with the 95 % confidence level.
Otherwise, the positionConfidenceEllipse shall be set to
unavailable.

3.3.3.3 High Frequency Container This container provides highly dynamic
information about a certain station. This information must be refreshed frequently

12



in order to keep the state updated. The following table illustrates the container’s

field in detail.

] Importadce Field Name ‘ Description ‘

B Heading Heading and heading accuracy of the
vehicle movement of the originating user
with regards to the true north. The
heading accuracy provided in the DE
headingConfidence value shall provide
the accuracy of the measured vehicle
heading with a confidence level of 95 %.
Otherwise, the value of the
headingConfidence shall be set to
unavailable.

R Speed Driving speed and speed accuracy of the
originating user. The speed accuracy
provided in the speedConfidence shall

provide the accuracy of the speed value

with a confidence level of 95 %.

Otherwise, the speedConfidence shall be

set to unavailable.

R Driving Direction Vehicle drive direction (forward or
backward) of the originating user.
Y Vehicle Length This DF includes:

« vehicleLengthValue: Vehicle length
of the vehicle user that originates
the CAM. If there are vehicle
attachments like a trailer, or
overhanging attachments like a
crane, which extend the vehicle
length to the front and/or rear;
then the vehicleLengthValue shall
provide the length for the vehicle
including the attachments.

 vehicleLengthConfidencelndication:
indication of whether the trailer is
detected to be present and whether
the length of the trailer is known.

13



Vehicle Width

Vehicle width, measured of the vehicle
user that originates the CAM, including
side mirrors.

Longitudinal
Acceleration

Vehicle longitudinal acceleration of the
originating user in the center of the mass
of the empty vehicle. It shall include the

measured vehicle longitudinal
acceleration and its accuracy value with
the confidence level of 95 %. Otherwise,
the longitudinal AccelerationConfidence
shall be set to unavailable.

Curvature

This DF is related to the actual
trajectory of the vehicle. It includes:

e curvatureValue denoted as inverse
of the vehicle current curve radius
and the turning direction of the
curve with regards to the driving
direction of the vehicle

o curvatureConfidence denoted as
the accuracy of the provided
curvatureValue for a confidence
level of 95 %.

Curvature Calculation
Mode

Flag indicating whether vehicle yaw rate
is used in the calculation of the
curvature of the vehicle user that
originates the CAM.

Lane Position

The DE lanePosition of the
referencePosition of a vehicle, counted
from the outside border of the road, in

the direction of the traffic low. This DE
shall be present if the data is available
at the originating user. This concept
can be computed in a curvilinear
framework if a map is available.

14




Steering Wheel angle

This DF includes the steering wheel
angle and accuracy as measured at the
vehicle user that originates the CAM. It

consists of the following DEs:

o steeringWheelAngleValue denotes
steering wheel angle as measured at
the vehicle user that originates the

CAM.
 steeringWheelAngleConfidence
denotes the accuracy
of the measured
steeringWheel AngleValue for
a  confidence level of 95
%. Otherwise, the value of

steeringWheelAngleValue shall be

set to unavailable.

Lateral Acceleration

Vehicle lateral acceleration of the
originating user in the center of the
mass of the empty vehicle. It shall
include the measured vehicle lateral

acceleration and its accuracy value with
the confidence level of 95 %. This DE
shall be present if the data is available
at the originating user.

Vertical Acceleration

Vertical Acceleration of the originating
user in the center of the mass of the
empty vehicle. This DE shall be present
if the data is available at the originating
user.

Performance Class

The DE performanceClass characterizes
the maximum age of the CAM data
elements with regard to the
generationDeltaTime

CenDRSCTollingZone
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G Yaw Rate This DF includes:

« yawRateValue denotes the vehicle
rotation around the center of
mass of the empty vehicle. The
leading sign denotes the direction
of rotation. The value is negative
if the motion is clockwise when
viewing from the top.

« yawRateConfidence denotes
the accuracy for the 95 %
confidence level for the measured
yawRateValue. Otherwise, the
value of yawRateConfidence shall
be set to unavailable.

3.3.3.4 Low Frequency Container This container provides low dynamic
information about a certain station

Importance Field Name Description
G Vehicle Role The role of the vehicle user that
originates the CAM. The setting rules
for this value are out of the scope of the
present document.

G Vehicle Light Status of the most important exterior
light switches of the vehicle user that
originates the CAM.

G Path History This DF represents the vehicle’s recent
movement over some past time and/or
distance. It consists of a list of path
points, each represented as DF
PathPoint. The list of path points may
consist of up to 23 elements.

3.3.3.5 Special Container This container must be filled with another container
according to the type of special vehicle and its characteristics we want to describe
(e.g. if it is a police car, it is communicated whether the car is on an emergency
status or not). This part is not considered relevant to our study and so it is not

16



described in detail.

3.4 Cooperative Perception Message (CPM)

The main goal of a Cooperative Perception (CP) basis service is to share with
other road users the environment perceived by a vehicle with its own sensors.
The perceived environment representation can be refined, fused, processed and
classified before the broadcast. Final results are stored into CP objects and
broadcast to other road users. Moreover, some quality indexes can be added to
perceived objects, in order to quantify the information reliability and consistency.

A CP object contains an aggregated and interpreted abstract information
perceived by sensors about other road participants and obstacles. Typically objects
are represented in a mathematical formalism i.e. a set of variables describing
characteristics as their dynamics, their geometry and several other aspects.

In this part, we are also interested in analyzing which information is relevant
to exchange perception between several road users. In particular, we focus our
attention to safety-critical use cases and we investigate the required level of information
to proficiently ensure safety. Obviously, a trade off between detailed information
and payload size of the message exists. Such constraint implies that we must
investigate the essential information to be shared among road users in order to
both provide a compact and complete environment representation and to avoid
sending redundant information.

Finally, the object representation is sent to other surrounding vehicles exploiting
the V2X communication. With this new received knowledge, other users can
enhance their environment representation and complete their knowledge of the
ongoing road scenario with information that is not directly accessible.

Some examples where this service can improve the performance are the filling
of blind spots and cluttered environments. In our specific case, we exploit a remote
intelligent infrastructure to provide the autonomous vehicle additional sources of
information via I2V communication. For this reason, in the following part, we
investigate the contents of a CPM message to select information that is necessary
to broadcast to ensure safe navigation in a roundabout.

3.4.1 Cooperative Perception versus Cooperative Awareness

Cooperative Perception is the concept of sharing perceived environment of a road
user to others. This perception is based on information obtained from sensors.
The main difference between cooperative perception (CP) and the cooperative
awareness (CA) is that, in the first case, the broadcast information is about
the vehicle current environment, rather than about the vehicle current status.
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However, it is mandatory to include in a CP basic service information about the
sending vehicle in order to reference the perceived objects in other vehicles frames.

3.4.2 Messages Transmission and Generation

The road user is supposed to send a CPM whenever it detects an object with a
sufficient level of confidence. It is possible not to send a detected object because
the confidence level on the detection is low. However, even if the object is rejected,
the user should send a CPM (at least empty, if no objects are reputed to have good
confidence) at minimum sending frequency. The empty container must have inside
it the information about the sending vehicle. This can help other road users in
knowing the following things:

o A road user is present on the scenario
o A potential additional source of information is present on the scenario
Transmission rate of a CPM is computed according to the following criterion:

o Broadcast information should be as detailed as possible and provided as
frequently as possible

e The utilization of the channel should be minimized

According to this, the CP basic services define the limits of the interval between
two consecutive CPMs (and the corresponding sending frequencies) as follows:

o Toencpm > Toencomatin, With Tyencpmarin = 200 ms (CPM generation rate of
5 Hz)

o Toencpm < Lgencpmmazn, With Tyencpmaras = 1000 ms(CPM generation rate of
1 Hz)

A CPM message needs to be generated when:
o A new object is detected
o A change in position of a previously declared static object is detected

o A change in velocity or position of a previously declared dynamic object is
detected.

18



3.4.2.1 Object Confidence Transmitted data should be as close as possible
to the original data. In such situation, one idea could be to send directly sensors
raw data. This has the advantage that no information loss occurs. In facts,
perceived information is transmitted in its raw data form without introducing any
kind of treatment on data. However, it is not possible to send raw data directly
because it is not feasible in terms of channel load and there is no guarantee that
the receiving user has the necessary means to process them. For this reason, it is
often preferred to send a compact representation of the perceived environment. If
the channel constraints allow it, it is also possible to attach into the CPM some
raw data representation.

In order to fulfill the whole requirements of CPM standard, some processing at
low levels is needed. In particular, it is required to send an object and to provide
an index that quantifies the confidence level of the provided information. This
has to be done to provide the receiving user a means to evaluate the quality of
a detected piece of information. Such confidence needs to be computed in a way
that it can have the same meaning for every user that has access to the shared
object. However, there exist some cases in the literature where this value depends
on the particular method that has been used to compute it. Confidence needs to
be computed considering coherency with previously sent CAMs. This can help in
tracking objects and in associating the new detection to the previously existing
ones.

3.4.2.2 Objects localization and HD maps CPM deals only with objects
that move or have the ability to move. This assumption corresponds to driving
scenarios. This imposes that objects must be located on the driving lanes or
pedestrian walks. If a map-based representation of the driving environment is
available, it can be useful to have map-matching procedures to localize objects on
the scene at lane-level. Such phase has to be included into the CPM pre-processing
part. Moreover, the map matching results should be sent to other users, in order
to provide also the vehicle location inside a high-definition (HD) map and also
their occupancy at lane level. However, to exploit such information in a proficient
way, one needs to assume that the HD map is the same for every agent, which
is, in general, not true. In our case, we assume that both the remote intelligent
infrastructure and the autonomous vehicle share the same HD map representation
of the driving environment.

3.4.2.3 CPM Message Format The CPM format is made of several containers,
as the usual structure of ETSI standard messages. In Figure 7, we illustrate the
general structure of a CPM message.

On Figure 7, the ID of the sender is contained into the ITS PDU header. As
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Figure 7: General structure of a CPM message. Figure courtesy of [2]

we did for the CAM before, we need to ensure that every sender (Vehicles and
RSU) has a unique identifier. This time, we also need to specify if the sender is a
vehicle or a road side unit (RSU).

If the sending entity is a vehicle, it is strongly advised to specify into the
Originating Vehicle Container the information about the dynamic of the vehicle
(if it is available). On the other hand, if the message is generated by an RSU,
containers need to provide references to identify the infrastructure on the HD
road map. This is useful to localize information in the correct working frame.
In our work, we consider the map frame as the world frame. As a consequence,
information perceived by both the intelligent infrastructure and the autonomous
vehicle on board sensors is converted into such frame to be taken into account
during navigation.

3.4.2.4 CPM Payload Description As we did previously, we have decided
to assign a color to each field of the payload. Such colors are assigned to fields
according to the criteria explained in Table 1. Colors are assigned to each field
in order to specify the importance of every piece of information in the context
of a safety-critical autonomous vehicle navigation application. Contrary to the
scenario taken into account in section 3.3.3, we consider now a use case where
there is only one AD vehicle in a driving scenario with only MD vehicles. Direct
communication exists only between the infrastructure and the AD vehicle and,
of course, information about other road agents needs to be estimated by the AD
vehicle perception system. Table 1 explains the meaning of each color.
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Importance \ Field Name \ Description ‘
R Station It allows to identify the source of a certain CAM. It also
Identifier permits to distinguish between several sources of
information.
Y Station Type Tells us if the sending user is a vehicle or an
infrastructure (RSU)
R Reference It provides a position to reference perceived objects
position relatively to a global provided position. Detected objects
are referenced into the vehicle’s body frame. Once a
CPM is shared, the receiving user should be capable of
converting received data in their own frames.
R Timestamp A timestamp that indicates the time at which the cam
has been sent by the user. It is important to distinguish
between the sending timestamp of a CAM message and a
timestamp used to date perceived objects.

Management Container Information.
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Importance Field Name Description
B Heading Value of the vehicle’s heading w.r.t. to the true north
with a 95% confidence level. This data can help in
knowing the vehicle intentions in terms of trajectory. We
need to clarify the difference between vehicle heading
and vehicle orientation.
R Speed Driving speed of the sending vehicle. This measure
should be provided with a 95% confidence level.
B Vehicle Angle and angle accuracy of the disseminating vehicle
Orientation absolute orientation. This value is not equal to the
heading, that is computed considering the speed value.
An accuracy with a confidence level of 95% should be
provided.
R Driving Vehicle driving direction (Forward or Backward)
Direction
R Longitudinal Vehicle longitudinal acceleration of the originating user
Acceleration at the reference point of the vehicle. Accuracy value with
the confidence level of 95% should be included.
R Lateral Vehicle lateral acceleration of the originating user at the
Acceleration reference point of the vehicle. Accuracy value with the
confidence level of 95% should be included.
R Vertical Vehicle vertical acceleration of the originating user at the
Acceleration reference point of the vehicle. Accuracy value with the
confidence level of 95% should be included.
R Yaw Rate Rotation of the vehicle around its center of mass with its
95% confidence level
R Path The nominal trajectory of a vehicle. In a map-based
approach, Path is represented as an ordered list of
identifiers of the road links.
R Pitch Angle Vehicle pitch angle with 95% confidence level.
R Roll Angle Vehicle roll angle with 95% confidence level.
R Vehicle Width Width of the sending vehicle with 95% confidence level
R Vehicle Length | Length of the sending vehicle with 95% confidence level
R Vehicle Height Height of the sending vehicle with 95% confidence level
R Trailer Details Details on eventual vehicle trails
Originating Vehicle container information
Importance Field Name \ Description
R Intersection ID | Allows to link a CPM perceived from a given intersection

to an existing intersection on the HD road map

Originating RSU Container Information
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Importance \ Field Name \ Description
R Sensor ID An identifier of a sensor. This pseudonym is used to
relate sensor measurements to the sensor that perceived
the measurements. A correspondence between the
perceived objects and the corresponding sensor id should
be instantiated.
R Sensor type Type of sensor. (Enumerated value). This field can
indicate information not only from a single sensor, but
also information fused from several sensors.
R Vehicle Sensor Specifies if the sensor is mounted on a vehicle, other
characteristics are provided in [tab vehicle sensor]
R Stationary Specifies if the sensor is mounted on a roadside
Sensor infrastructure, other characteristics are provided in [tab
infrastructure]
Sensor Information Container
’ Importance \ Field Name \ Description
R Ref. Point Id Identification of a reference point in the case the sensor
is mounted on the trailer
R Sensor Position | Mounting position of the sensor in the x position w.r.t.
X offset the reference point of the vehicle
R Sensor Position | Mounting position of the sensor in the y position w.r.t.
Y offset the reference point of the vehicle
R Sensor Position Mounting position of the sensor in the z position w.r.t.
7Z offset the reference point of the vehicle
R Range Value of the sensor range
R Horizontal Start of the horizontal opening angle of the sensor w.r.t.
opening angle a vehicle body frame. The angle is measured from
start Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction
R Horizontal End of the horizontal opening angle of the sensor w.r.t. a
opening angle vehicle body frame. The angle is measured from
end Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction
R Vertical Start of the vertical opening angle of the sensor w.r.t. a
opening angle vehicle body frame. The angle is measured from
start Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction
R Vertical End of the vertical opening angle of the sensor w.r.t. a
opening angle vehicle body frame. The angle is measured from
end Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction

Vehicle Sensor Container
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Importance \ Field Name \ Description
R Sensor Position | Mounting position of the sensor in the x position w.r.t.
X offset the reference point of the infrastructure
R Sensor Position | Mounting position of the sensor in the y position w.r.t.
Y offset the reference point of the infrastructure
R Sensor Position Mounting position of the sensor in the z position w.r.t.
7 offset the reference point of the infrastructure
R Range Value of the sensor range
R Horizontal Start of the horizontal opening angle of the sensor w.r.t.
opening angle the infrastructure body frame. The angle is measured
start from Horizontal opening angle start to Horizontal
opening angle end in counter-clockwise direction
R Horizontal End of the horizontal opening angle of the sensor w.r.t.
opening angle the infrastructure body frame. The angle is measured
end from Horizontal opening angle start to Horizontal
opening angle end in counter-clockwise direction

R Vertical Start of the vertical opening angle of the sensor w.r.t.

opening angle the infrastructure body frame. The angle is measured
start from Horizontal opening angle start to Horizontal
opening angle end in counter-clockwise direction

R Vertical End of the vertical opening angle of the sensor w.r.t. the

opening angle infrastructure body frame. The angle is measured from
end Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction
Stationary Sensor Container
| Importance [ Field Name | Description
R Circular Sensor with a circular view. It provides the radius of the
sensor field of view and the center point w.r.t. the
vehicle body frame

R Polygon This can be used to provide a detection polygonal area.
This area can be associate to one sensor or considered as
the union of several sensors characteristics. In the latter
case, the sensor type should be set to “fusion”. The field
PolyPoint provides the geometry of this detection area

R Ellipse This field can be used to provide a description of an
elliptic detection area. The required information is only

the geometry of the ellipse and its orientation in the
frame of the infrastructure.

R Rectangle This field can be used to provide a description of a
rectangular detection area. The required information is
only the geometry of the rectangle and its orientation in

the frame of the infrastructure.
Detecting characteristics of a sensor
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[ Importance | Field Name Description
R Object ID Identifier of the detected object. This id is unique for every object
from the same user. This id should help in identifying different
objects. Before labeling with this id, detected objects should be
refined via data fusion and tracking procedures in order to have a
consistent estimation of objects motion. It is recommended to use
the same id for the same objects in subsequent CPMs to facilitate
the association.
R Sensor ID Id of the sensor that detected the perceived object
R Time of A timestamp that states the exact time at which the measurements
Measurement from the detected object have been taken. This must not be
confused with the message timestamp. It is possible to express this
time relatively to the message timestamp. Information for
synchronization should be provided.
R Object Age Provides the age of the detected object. In order to have this field,
several data association procedures need to be taken into account
before sending the perceived objects
R Object The confidence associated to an object. This confidence should be
Confidence computed in a way that it is equal for every user, i.e. every road
entity can have the same information from this value. Objects with
confidence under a certain threshold value should not be sent.
R X, Y, Z Distances Absolute distance from the detected object to the user reference
point in the three coordinates x, y, z at the time of measurement.
This distance is expressed in the detecting user reference frame. A
confidence level of 95% should be provided.
R X, Y, Z Speed Relative speed of the detected object from the user reference point
in x, y, z directions at the time of measurement. This parameter
should be estimated as well as possible in order to track the object.
A confidence level of 95% should be provided.
B X, Y, Z Relative acceleration of the detected object from the user reference
Acceleration point in the x, y, z directions at the time of the measurement. A
confidence level of 95% should be provided.
B Yaw angle Relative yaw angle of the object from the user reference point.
This angle is computed w.r.t. the x direction of the detecting user
body frame. A confidence level of 95% should be provided.
B Object Bounding A bounding box representing the detected object. This object can
Box be modeled as a parallelepiped, with the 3 dimensions Length,
Width and Height. Some different and more detailed shapes of the
road entity as a mesh or a surface estimation can be considered to
be included in this field. We also need to associate a level of
uncertainty relative to these 3 measures, in order to quantify risks
in estimation of the detected user boundaries.
B Object reference The reference point relative to the perceived object. Provided
point measurements are computed w.r.t. this point.
B Object dynamic Classification of a perceived object towards the capability to move.
status Three statuses are possible:Dynamic Has been dynamic Static
R Classification Provides the classification of an object in several pre-defined
categories.
Perceived Object Container

3.4.2.5 CPM Reference Position For vehicles, we consider the reference
position (i.e. the origin of the vehicle body frame) as the center of the front

side (i.e. the width) of the bounding box of the vehicle, according to the CPM

standards. However, there exists several models in literature that consider the
origin of the vehicle body frame placed on the middle of the rear wheels axis.
Other implementations also suggest putting it on the middle of the back side of
the vehicle bounding box. It is mandatory to define a unique standard for this
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Figure 8: Different standards for the body frame.

field. If this is not possible, transformations to pass from the alternative vehicle
body frame to the standard one must be provided.

If the user is a RSU, the origin of the local frame should be defined as a point
of the infrastructure (e.g. the point in which a camera is mounted).

3.4.2.6 Sensor mounting specifications In the following figure (Fig. 10),
we can see an example of the sensors parameters that can be described in the
Sensor Information container.

3.4.2.7 Sensors field of view description It is possible to describe the field
of view of a sensor according to its characteristics. It is possible also to fuse several
fields of view obtaining a polygon describing a more complex covering zone.
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3.5 MAP Message (MAP)

The main goal of the MAP message is to announce the topology of the roads,
crossroads, roundabout that a vehicle may follow. The topology is described as
lanes for e.g. vehicles, bicycles, public transportation that connect with each other
and the allowed maneuvers, and signal group id for intersections equipped with
Traffic lights. Figure 11 shows an example of the topology of an intersection.
Basically each ingress lane is connected with one or more egress lanes which define
the allowed maneuvers in the intersection. This "connection" includes the signal
group identifier, which is the link for signalization between the topology and the
corresponding signalling.

)

Figure 11: Intersection topology.

3.5.1 MAPEM payload description

MAP Extended Message (MAPEM) is the extension of MAP message for Europe.
It is the MAP message as defined in SAE J2735 wrapped in the European ITS
PDU format. MAPEM is defined in ETSI TS 103 301 document [4]. It mainly
contains an Intersection Geometry List which is mainly composed of

o an intersection reference id, that identifies uniquely the intersection

o a reference point from which data points of lane set are offset until a new
point is used.
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o a lane list that describes all the ingress and egress lanes

The lane list is a set of generic lanes that are mainly made up of
e a lane id, that is unique within the intersection
e a descriptive name

« lane attributes that provides information about the basic selected lane type,
directions of use, Geometric co-sharing and type specific attributes

e the allowed maneuvers for this lane

e a node list that is lane spatial path information as well as various Attribute
information along the node path

» the connections to other lanes with tha associated signal Group Id, which is
mainly used to correlate with the information sent in the SPAT message.

3.5.2 MAPEM generation

For Tornado project, MAPEM was sent at 1Hz, which was far enough as the
topology of the intersections is static. The vehicle must just receive the MAPEM
message at least once before crossing the intersection.

3.6 Signal Phase and Timing Message (SPAT)

The main goal of the SPAT is to announce the current states of an intersection
managed by traffic lights. It includes safety-related information for supporting
vehicles to execute safe maneuvers in an intersection area. The goal is to enter
and exit an intersection "conflict area" in a controlled way. It announces in real-
time about the operational states of the traffic light controller, the current signal
state, the date of next phase change. Figure 12 shows an example of the description
of a crossroad managed by traffic lights.
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Figure 12: Intersection signaling status

3.6.1 SPATEM payload description

SPAT Extended Message (SPATEM) is the extension of SPAT message for Europe.
It is the SPAT message as defined in SAE J2735 wrapped in the European ITS
PDU format. SPATEM is defined in ETSI TS 103 301 document [4]. It mainly
contains an Intersection State List which is mainly composed of

« an intersection reference id, that identifies uniquely the intersection.

« a movement list. Each Movement is given in turn and contains its signal
phase state, mapping to the lanes it applies to, and point in time it will end,
and it may contain both active and future states.

The movement list is a set of movement state that are mainly made up of

« a Signal Group Id, which is mainly used to correlate with the information
sent in the MAP message

e a movement event list that mainly contains the dates at which the current
and next phases change will occur.

3.6.2 SPATEM generation

For Tornado project, SPATEM was sent at 1Hz, which was enough as there was
no pre-emption or prioritization requests sent to a traffic light controller. It is
important to note that SPAT announces a date of changement and not a remaining
time (which allows to bypass latency problem) and as there is no prioritization
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request, the date of current phase change is static. The vehicle must just receive
the SPATEM message at least once before crossing the intersection.

4 The camera based perception system

The camera based perception system is designed to provide, in real time, important
information to autonomous vehicles in poor visibility junction such as a roundabout
or in a strong interaction area between vehicles and vulnerable road users :

o targets’ identities: vehicles, motorcycles, trucks or pedestrians
o targets’ accurate positions and poses

« the directions of the targets

4.1 Camera latency

An efficient roadside perception system must provide information in real time with
the lowest latency. During the experimentation, we notice that cameras have non-
negligible shuttle lag for our application. The shutter lag is the delay between
triggering the shutter and when the photograph is actually recorded. This is a
common problem in the photography of fast-moving objects or people in motion.
In the section 4.5, we will show that it is critical for a real-time application to have

a camera with a shutter lag as short as possible. In our project only one model
was used. It is the Basler BIP2 1300C.

4.2 Camera calibration

The camera calibration is an important part of the system installed on the roadside.
This step is necessary to extract real world 3 dimensional information from the two-
dimensional image data. The procedure can be equated with determining intrinsic
and extrinsic camera parameters. Intrinsic parameters deal with the camera’s
internal characteristics, such as its focal length, skew, distortion, and image center.
Extrinsic parameters describe its position and orientation in the world. Knowing
intrinsic parameters is an essential first step for extracting real-world information,
as it allows you to estimate the scene’s structure in Euclidean space and removes
lens distortion, which degrades accuracy. Our approach is based on the Zhengyou
Zhang’s 1999 paper [30]. The main geometric principle of the camera calibration
and the understanding of real world scene in computer vision is covered by the
Hartley and Zisserman’s book [13]. The calibration of the camera includes intrinsic
and extrinsic calibration. The intrinsic calibration is done only once and the
extrinsic calibration must be done each time the camera is moved.
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4.2.1 Intrinsic calibration

The intrinsic calibration is achieved using the OpenCV library on Python. We
also use the OpenCV chessboard. The figure 13 is showing an undistorted result
for one camera.

Figure 13: The undistorted result of the chessboard image by the OpenvCV
intrinsic calibration algorithm

The useful result is the camera matrix (1) and the distortion vector (2) that
are the input of the perception system.

fe 0 ¢
0 fy ¢ (1)
0 0 1

d = (ki, ko, k3) (2)

where (f;, f,) is focal length and (¢, ¢, ) is optical center. The distortion coefficients
are parameters of the radial distortion model given by the equation (3)

randist = a(1+ kit 4 by + k) 3
yundist = y(1+ kyr? 4 kor® + ksr®)

The intrinsic camera calibration by OpenCV can be found on: https://opencv-
python-tutroals.readthedocs.io

4.2.2 Extrinsic calibration

The extrinsic calibration is carried out on the field. The final goal is to be able
provide detected and tracked vehicle’s position in a well-known ground frame of
reference. The generally used reference to describe the land vehicle trajectories is
the East, North, Up reference (ENU). In our project, the CAVs and the perception
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Figure  14: ENU and ECEF  reference. (Wikipedia
https://en.wikipedia.org/wiki/Axes conventions)

system will used this frame of reference. The figure 14 is showing the ENU and
the Earth Centred, Earth Fixed (ECEF, used by GPS) references.

We want to install the system on several sites including four in Rambouillet’s
Bel-air shopping center where the project demonstrate the secured CAV system
and the roundabout in front of the Université Technologique de Compiegne (UTC).
The extrinsic calibration is to estimate the position and orientation of the camera.
To do that, we choose in the image of the scene remarkable points such as roadside
panels, roadside public lights and lane markings. The positions of these points in
the real world must be available. We use the Renault’s confidential map with
accurate positions from GPS. The first step of our the procedure is to associate
manually the chosen points to the numerical Map’s data. The figure 15 is showing
our method.

The second step is the estimation of the rotation matrix and the translation
vector of the camera using Nelder-Mead’s Simplex approach. The translation
matrix is the camera’s position in the ENU reference and the rotation matrix
provides the camera’s orientation in the same reference. We first verify that the
chosen points can be back projected into the image and the projection is not too
far from the clicked points, the errors of the back projection can be an indicator
of the accuracy of the calibration. For the two Rambouillet’s roundabouts the
mean errors back projection are 2.5 and 3.2 pixels, and for the UTC’s roundabout,
the error is 2.7 pixels. We finally provide the visual result of the calibration
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Figure 15: The data association between the image and the numerical map is done
manually.

by choosing 21 points in an image roundabout in "rue d’orphin" and map them
into the real-world ENU coordinates. Later on, we will validate the calibration by
comparing the GPS embedded in the UTC autonomous vehicle using the detection
and tracking algorithm presented in the following section 4.3.
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4.3 detection and tracking algorithms

To assist the CAV in trajectories planning, the perception system should provide
every moving road users’ information (position, speed) nearby the vehicle to predict
the upcoming interactions between the CAV and the other users. The positions and
speed estimations are achieved by using computer vision’s detection and tracking
algorithms. The target’s classification and the dynamic information must then be
broadcast to every CAV in and nearby the intersection area.

Detection and classification

Figure 16: The data association between the image and the numerical map is done
manually.

The proposed camera’s perception system is based on two main algorithms:
the convolutional neural network (ConvNet) [17] based YOLO (You Only Look
Once) [15, 22, 23] classification system and a tracking algorithm based on a graph
optimization proposed by [8]. Our method is first to detect every road users
(the targets) such as vehicles and vulnerable users and classify them into different
classes. The targets are represented by a vector v; = (d;, %, i, Vs, vy ;) Where, d;
is the timestamp (every target detected in the same image frame have the same
date), (z;,;,0) are the coordinates in the ENU reference frame and v; = (v, vy,)
is the speed in the ENU reference frame. We will first present the classification
part then the tracking part.
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4.3.1 Road users detection by deep network

In our system, we want to detect the moving road users that may have interaction
with the CAV and may modify the CAV’s planned trajectory. The road users are
motorized vehicles like personal car, trucks, motorcycles but also the vulnerable
users like pedestrians or cyclists. This section is dedicated to the description of
the object detector and more specifically of the CNN based algorithms.

4.3.1.1 Generalities A deep detection algorithm consists in classifying objects
and in localizing objects in images by using deep convolution networks (CNN).
Because deep network can efficiently learn feature space within images, many
algorithms have been proposed to detect, classify and localize objects in the scene.

On the one hand, some methods proceed through a two stages algorithm: the
first stage is proposing some regions of interest that are removed or confirmed
during a second stage (R-CNN/[11] and their variants Fast R-CNN [12] and Faster
R-CNN [24]). During this last stage, the objects are confirmed (i.e. detected),
classified and localized. On the other hand, other methods do not require to
pre-detect any objects of interest. In these cases, objects are labeled and localized
directly from the image content (Single Shot detectors- SSD [19] and YOLO version
1, 2, 3 [15, 22, 23].

R-CNNs are one of the first deep learning-based object detectors and are an
example of a two-stage detector. In the first step of the algorithm, bounding boxes
that could contain objects are proposed. In the first R-CNN version [11], the object
detector requires an algorithm such as Selective Search [26]. In the second step,
the region in the bounding boxes were then passed into a CNN for classification,
ultimately leading to one of the first deep learning-based object detectors. The
problem with the standard R-CNN method was that it was painfully slow and
needs another algorithm such as Selective Search to provides region of interest
(ROI) as input.

Girshick et al. published a second paper in 2015 [12] about the Fast R-
CNN algorithm made considerable improvements to the original R-CNN, namely
increasing accuracy and reducing the time it took to perform a forward pass.
However, the model still relied on an external region proposal algorithm. All the
proposals of the Selective Search are then passed into the R-CNN component for
final classification and labeling but it has been modified to not require to feed all
the region proposals to the convolutional neural network every time. Instead, the
complete feature space is computed once per image and the feature subspace of
each proposal is generated by projecting the ROI of each proposal into the feature
space volume and by applying a ROI pooling.

In the same year, [24] published the faster R-CNN, third version of the R-
CNN. This last version of R-CNN became a true end-to-end deep learning object
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detector by removing the Selective Search requirement and instead relying on a
Region Proposal Network (RPN) that is fully convolutional and it can predict
the object bounding boxes and the objectness scores (i.e., a score quantifying how
likely it is a region of an image may contain an image).

While R-CNNs tend to very accurate, the biggest problem with the R-CNN
family of networks is their speed they were incredibly slow, obtaining only 5 to 7
FPS on a GPU for the last improved version of it.

The two-stage detectors appear clearly not fast enough except when using
powerful GPU materials. As alternatives, algorithms that compute both boundary
boxes and classes directly from feature maps in one step (i.e. without RPN or
Selective Search steps) were developed. The most poplular are SSD and YOLO.
These algorithms consider object detection as a regression problem, taking a
given input image and simultaneously learning bounding box coordinates and
corresponding class label probabilities. In TORNADO project, we need an algorithm
that treats data as fast as possible with a good accuracy and without requiring
a high performance computing hardware. The table 4 are extracted from [24]: it
appears clearly that YOLO V3 yields the best rate for the best frame rate. This
method has been used in the project. In this table, the second column shows the
mean average precision (mAP) that is a popular metric in measuring the accuracy
of object detectors when the Intersection of Union (IoU) between the predicted
bounding box and the ground truth is greater than 50%. This metric is used in
COCO challenges (http://cocodataset.org/#detection-eval) to evaluate detectors.
With the resolutions 320 x 320 and 416 x 416, YOLO V3 is the faster detector and
the mAPs are higher than the SSD’s. The other detectors are too slow compared
to YOLO V3.

4.3.1.2 YOLOvV3 algorithm description YOLOv3 is an improvement of the
YOLO network. We first describe YOLOv1 and v2 architectures to finally present
the different modifications of YOLOv3.

YOLO divides the input image into an N x N grid and this algorithm is made to
predict that only one object is contained in each grid element (objectness). A fixed
number B of boundary boxes is predicted for each grid element. A confidence value
is estimated for each boundary and a fixed number of conditional class probabilities
C' are estimated for this single object i.e the probability that the detected object
belongs to one of the set of classes. Finally, YOLO outputs a tensor which shape
is: (N,N,X). X is defined by X = B*5+ C.

YOLO architecture (cf. Figure 17) is inspired from GooLeNet architecture and
it is based on 24 convolutional layers followed by 2 fully connected layers (FC).
Some convolution layers use 1 x 1 reduction layers alternatively to reduce the depth
of the features maps as proposed in the Inception block of Google net. The output
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Method mean Average Precision(mAP)-50 time (ms)

SSD321 45.4 61
DSSD321 46.1 85
R-FCN 51.9 85
SSD513 50.4 125
DSSD513 53.3 156
FPN FRCN 59.1 172
RetinaNet-50-500  50.9 73
RetinaNet-101-500 53.1 90
RetinaNet-101-800 57.5 198
YOLOV3-320 51.5 22
YOLOV3-416 55.3 29
YOLOV3-608 57.9 51

Table 4: Comparison of CNN based detector.

tensor before the FCs has a shape (7, 7, 1024). The 2 fully connected layers as
a form of linear regression, and outputs a (7,7,30) shape layer parameters that
contents B = 2 boundary box predictions per location for C' = 20 classes to be
train and evaluation on PASCAL VOC dataset.

The learning step is based on the optimization of the loss function defined by
the sum of the 3 following loss functions: the classification loss, the localization
loss (errors between the predicted boundary box and the ground truth) and the
confidence loss (the objectness of the box). To compute the loss for the true positive
bounding boxes that are relevant to the single detected object, the bounding box
with the highest IoU (intersection over union) with the ground truth is selected.

YOLOV2 is the first upgraded version of YOLO. It keeps its general strategy
and add some improvements. For example, it accepts multi-resolution as input
images (we have to make sure that width and height are a multiple of 32). To
avoid the problem of vanishing or unstable gradient and the difficult convergence
during the training, YOLOvV2 proposes to predict several bounding boxes from a set
of 5 anchors from which they are derived. To reduce the effect of shallow feature
map, reshaped layers are concatenated from low to high resolution to obtained
fine-grained feature map. This approach is able to better detect small objects. At
288 x 288 YOLOV2 runs at more than 90 FPS with mAP almost as good as Fast
R-CNN. At high-resolution YOLO achieves 78.6 mAP on PASCAL VOC dataset.

YOLOvV2 has been designd with different CNN backbone network. First VGG-
16 has been chosen to reach better results on PASCAL VOC dataset and a top-5
rank on Imagenet dataset. If replaced by GoogleNet architecture, the performance
decreases. The backbone has been finally simplify as described on the figure 18.
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Figure 17: Yolo architecture: 24 convolutional layers followed by 2 fully connected
layers. Alternating 1 x 1 convolutional layers reduces the features space from
preceding layers.

As for YOLOV2 the two FC are removed and replaced by three 3 x 3 convolutional
layers each outputting 1024 output channels (cf 19. A final 1 x 1 convolutional
layer is following to convert the 7 x 7 x 1024 outputs into 7 x 7 x 125 (N = 7 cells,
B = 5 boundary boxes each with 4 parameters for the box, 1 objectness score and
20 conditional class probabilities).

YOLOvV3 is the network used for TORNADO detection system. It is based
on YOLOv2 with 4 main new contributions. The backbone is a new darknet-53
network described in the figure 20 as the feature extractor. Darknet-53 mainly
compose of 3 x 3 and 1 x 1 filters with skip connections like the residual network in
ResNet. Darknet-53 has less billion floating point operations than ResNet-152, but
achieves the same classification accuracy at 2x faster that is a very good property
for our real-time TORNADO application.

YOLOv3 uses a multi-label approach for classification. Softmax is not used
as for YOLOv1 and v2. Independent logistic classifiers is used to perform good
performance. Because of this choice, binary cross-entropy loss is used during
training. Moreover, this formulation helps when there are many overlapping labels
(i.e. Woman, Person, pedestrian) in the dataset. Using a softmax constraints that
classes are mutually exclusive.

YOLO v3 makes prediction at three scales, which are precisely given by downsampling
the dimensions of the input image by 32, 16 and 8 respectively. Thus it makes 3
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Type Filters Size/Stride Output
Convolutional 32 3x3 224 x 224
Maxpool 2x2/2 112 x 112
Convolutional 64 3x3 112 x: 112
Maxpool 2x2/2 56 x 56
Convolutional 128 3x3 56 x 56
Convolutional 64 1% 1 56 x 56
Convolutional 128 3 %3 56 x 56
Maxpool 2x2/2 28 x 28
Convolutional 256 3x3 28 x 28
Convolutional 128 Tixe 1 28 x 28
Convolutional 256 3x3 28 x 28
Maxpool 2x2/2 14 x 14
Convolutional 512 353 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3 x3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3x3 14 x 14
Maxpool 2x2/2 TxT
Convolutional 1024 3x3 TxT
Convolutional 512 1x1 TxT
Convolutional 1024 3x3 B
Convolutional 512 1x1 TxXT
Convolutional 1024 3x3 TXT
1000 153 1 TXT
Avgpool —Global | 1000
Softmax o

Figure 18: Darknet architecture on which the last convolution layer of VGG-16
based YOLO has been removed and replaces.

predictions per grid elements. Each prediction composes of a boundary box, an
objectness and C class scores, i.e. N x N X [3 x (4+ 1+ C|] predictions. Because
of this Feature Pyramid Networks (FPN) like approach, the final architecture
contents more than 53 layers as presented in the figure 21

4.3.1.3 YOLOV3 training The latest version of YOLOv3 has been trained
on COCO dataset that content 80 object categories of labeled and segmented
images. The learned weights are available for downloading by following this link:
https://pjreddie.com/media/files/yolov3.weights

The training of YOLOv3 network is carried out using the built-in functionality
of the Darknet framework (https://pjreddie.com/darknet/yolo/). This framework
allows users to set the network structure using configuration files and specify the
hyper parameters for the network and its training. After a training step, the user
can apply the neural network defined by the learned weights to process images or
videos and check the quality of the training on set of test samples.

Neural network training takes place over several epochs. During this process, at
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Figure 19: The two FC are removed and replaced by three 3x3 convolutional layers
each outputting 1024 output channels. A final 1 x 1 convolutional layer is following.

Type Filters Size Qutput
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128x 128
Convolutional 32 1x1

1x| Convolutional 64 3x3
Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1

2x| Convolutional 128 3x3
Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x1

8x| Convolutional 256 3x3
Residual 32 x 32
Convolutional 512 3x3/2 16x 16
Convolutional 25 1x1

8x| Convolutional 512 3x3
Residual 16 x 16
Convolutional 1024 3x3/2 Bx8
Convolutional 512 1 x1

4x| Convolutional 1024 3x3
Residual Bx8
Avgpool Global
Connected 1000
Softmax

Figure 20: Architecture of the Darknet-53.

each stage, the weights are optimized using gradient descent based method and a
back propagation process. When training the network afrom scratch,a the weights
are initialized by randomly non zero values distributed to avoid error propagation.

In TORNADO project we use the "fine tuning" approach. This approach uses
a pre-trained model, i.e. a set of pre-trained weights, that performs a quite similar
recognition function. The objectif are (1) to reduce the set of classes to the objects
the TORNADO system can perceive, (2) to improve the bounding boxes accuracy
and (3) to remove the false positive detection. YOLOv3 has been trained on

PASCAL VOC, Imagenet and COCO datasets.

The best model obtained for
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Figure 21: Architecture of the backbone YOLOv3 with FPN.

YOLOvV3 has been trained on COCO dataset. We retrieve all the object classes
we aim at detecting in the 8 first classes of the COCO labels: person, bicycle,
car, motorcycle, bus, truck. The YOLOv3 network has been initialized with the
COCO trained weights and trained again by using our TORNADO dataset. TO
ovoid overfitting the learning rate (LR) is set lower than the LR used for a training
from scratch.

While a training YOLO from scratch needs a high number of images for each
class, "fine-tuning" needs less sample per class. The TORNADO dataset that
has been use to fine-tune the COCO YOLOv3 model has been extracted from the
stream of a video camera installed on the infrastructure near the roundabout which
was on the route of the autonomous shuttle. The images were selected taking care
not to have the same moving objects several times in the scene, i.e. avoiding taking
successive images. Moreover, the object class appear at different positions on the
road and roundabout.

The images have been annotated using the Yolo_mark tool available at:
https://github.com/AlexeyAB/Yolo mark. Other tools can be used but each
annotated object has to be defined by one line of the form:

< object — class >< x >< y >< width >< height >

where < >, < y > are the coordinates of the center of the Bounding Box and
< width >, < height > are the size of the bounding box and < object — class >
is the class id of the object: person(0), bicycle(1), car(2), motorcycle(3), bus(4),
utilitaire(5), truck(6). The 4 values related to the bounding box are normalized
by the width and the height of the image. For the training, the TORNADO
dataset was cut in two subsets of images: the training and the evaluation subsets
representing respectively 80% and 20% of the dataset. The training has been
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executed on a NVIDIA P5000 GPU. The convergence ended after 5 days. The
figure 22 illustrates what is obtained by the new model. It appears clearly that all
objects are detected with the good label and the bounding boxes are accurately
estimated that is required for the next part of the algorithm that estimate the 3D
location of the detected objects (cf. 4.3.2).

Figure 22: Detection results obtained by applying the fine-tuned darknet model.

4.3.2 Graph based tracker

Tracking multiple targets is important in many computer vision application including
Autonomous vehicles trajectories planning, event recognition etc. This problem
received many attention during the last decade. In crowded environments, the
road users can be occluded or may be not detected or misclassified. Thus, the
tracking is often a difficult task.

First, we will review the popular trackers. Kalman Filtering (KF) is an efficient
way to address multi-targets tracking when the number of targets remains limited
[14, 9]. However, when this number increases, errors and missed detection become
more frequent and the these errors are difficult to handle due to the recursive
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nature of method if the KF is applied without modification. Particle Filtering
(PF) [25] is another popular tracking method and it can avoid the KF problem by
exploring many hypothesis. Another method to associate the detection over time
is the Dynamic Programming but the computational complexity can be very high
[28, 10]. The graph-based tracker is another interesting method for multi-target
tracking [29, 6, 21, 16]. Unlike the other method mentioned above, this method is
able to handle a huge and varying number of targets. The problem to solve is a min
flow cost problem; the cost can be minimized by using linear programming. We
will use this approach to track vehicles and vulnerable users in Tornado project,
especially the method proposed by [29] that is also used by [21, 16]. Furthermore,
the usual graph-based trackers use the tracking by detection paradigm: first, object
ares detected in each frame of the sequence and in the second step, each detected
object in the frame f is associated to a detected object of the frame f 4+ 1. This
carried out for each frame of the sequence minimizing the flow cost of the graph to
construct complete trajectories. These applications are initially not used in on-line
applications.

Let us first provide a fast explanation of the approach. The data association is
based on the observation that there is an analogy between finding non-overlapping
object trajectories and finding edge-disjoint paths in a graph; the latter can be
solved efficiently by network flow algorithms. In the detection step, each detected
target is presented by a vector d = (x;, b;, t;), where z; is the position of the target,
b; is the size of the target that can be the size of the bounding box and ¢; is the
time stamp of the target. In the application, the time stamp is the time stamp of
the acquired frame. Let X = d; be a set of targets observations. A trajectory 7 is
defined as an ordered list of the detection vectors 74, = dy,, dg,, - - ,dy,. Zhang et
al. define the data tracking problem as a MAP problem with the non overlapping
constraint:

Top = argmax; [1; P(d;|T) [1,,er P(7%) (4)
TkﬂTl = ®7Vk 7é [

where:

1—51- a7 GT,di € T
Bi, otherwise
P(re) = P({dks dkys - - - 5 di, }) = Po(diy) Pa(dyy [dio) Pa(dhy |dyy ) - - - Pa(di,,  |d, ) Pe(dy,)
(5)

B; is the probability for d; to be a wrong target or false detection, P, is the
probability for a detection to be the first point in the trajectory, Pis the transition
probability between two detections of two frames and P,is the termination probability.
The non overlapping constraints of the optimization problem can be modelized by
the 0-1 indicator variables :

P<di|T) =
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1dn, € T,d; is the first point in 7y
Joi = { 0, otherwise
13dr, € T,d; 1s the last point in 1
{ 0, otherwise
13m, € T, d; isright after d; in 7,
0, otherwise
f = { 13dr, €T, d;isin T,

0, otherwise

fﬁ,i
fz‘,j = {

With the equation6, the trajectory 1" is non-overlap if and only if :
ij,i"i_fn,i:fi:fo,i"i_z.fid (7)
i,j i,J
The equation 7 is the constraint of the optimization problem 4 and the -log of
the objective function can be written with the 0-1 indicators:

T =argminy Y _ Coifoi+ > Cijfii+ > Cuifui+ > Cif; (8)
i i,j i i

where Co-ﬂ' = —Ln(Pg(dl)), Cﬁyi = —Ln(P,{(dz)), Ci,j = —Ln(P)\(dJ‘dl)) and
CZ' = Ln(l% )

The outéut of the tracker is the optimal list of trajectories T' = 7, that
maximizes of the following probability.

This optimization problem can be mapped into a cost-flow network with source
o and sink k. Looking carefully at the costs in the equation 8, there are the
transition cost C;; and the cost C; of the detection d; in one of the trajectories of
T.

This means that in the cost-flow network, one detection d; is represented by
two nodes (u;,v;), u; being the transition node that can be seen as the predicted
position of the previously detected target and v; being the observation node where
the cost depends on the current detected target’s data and the previous one’s.

The nodes (u;, v;)can be grouped by layer. Each layer contains every detections
at the same time ¢.

For instance, let us say, we have a sequence of 3 frames. In the first frame,
taken at time ¢y, there are 2 detections, in the second frame taken at time ¢, there
are 3 detections and in the last frame at time ¢, there are 2 detections. Each node
pair (u;,v;) represents a detection.

4.3.3 Graph based tracker for the Tornado perception system

In the section 4.3.2, we described graph based tracking that is designed for a off-line
application and the algorithm is applied to the entire sequence with usually a large

45



//'?\\\\
v m
\\\\ —
e BV o omm v
» \ O\ )
‘ ui ‘ | vi 4) - TV“ u‘ ‘ ‘ V‘ |‘ 1 " y
,7,:11"?'/\"\1 Y i
e e | _ A /
| \ |
_ | _ R\ -
Time t, ; Time t, ARAE // Time t,
\\}
ﬁ‘/
observation arc transition arc cost : enter/exit arc cost :
cost: C Cc c,Ic,

i

Figure 23: An example of cost-flow network with a sequence of 3 frames. Each
node pair (u;, v;) represents a detection

amount of frames. The goal of this approach is to be robust to long term occlusions.
In our application, the tracker must track vehicles in real time. Recent works show
that the multi-targets tracking can be carried out on-line, the well-known on-line
tracker are SORT [7]and Deep SORT[27] that only track the pedestrians. These
algorithms are based on the tracking-by-detection principle like the graph based
tracking but instead of solving occlusion problem, the main goal is to track objects
in real time as accurate as possible. The long term occlusions are no more a the
main issue of the tracking problem. In SORT, the tracking is carried out with two
steps: the prediction step using linear Kalman filtering and the second step is to
associate the new detections to existing target using the Hungarian algorithm. For
the data association, SORT only assumed that the bounding boxes have a constant
shape. If this assumption is true for the pedestrians it is no longer valid for the
vehicles because the vehicle’s shape vary significantly when it turns right or left.
To solve both the short term occlusions issue and the real time constraint issue,
we modified the network flow method by [29]. We proceed with a sequence of 3
to 5 image frames. As an example, at timet,, we have 3 frames with time stamp
(t_a,t_1,1t0) as input of the tracker, at time t;, the frame with the time stamp
t_o exits and a the new frame with time stamp ¢; enters in the new sequence
of images with time stamp (¢_1,%g,%;) as the new input of the tracker (cf figure
24 a) Each newly detected target is assigned with a label and it keeps this label
until it leave the field of view (FOV) of the camera. However, a target can be
occluded temporarily by another tagret and it does not exit the FOV. In [29],
the occlusion model is solved using the Explicit Occlusion Model (EOM) for the
short term occlusion but this method is only efficient when the number of the
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Figure 24: a: The new frame at time ¢;enters in the sequence of 3 frames and the
oldest frame exits the sequence. b: Additional arcs for occlusion ares added in the
graph

sequence is important. We use a simpler solution by adding occlusion arcs that
are transition arcs connecting nodes from the " frame to nodes of the (i + k)%
frame with k& > 1.(cf figure 24 b). Like SORT, we also use the Kalman filter to
predict the target’s new position and to smooth the vehicle’s speed. The Kalman
filter predicts the future positions of the targets once the data association is carried
out using the linear model 9:

Tpil = Tp + T, AL
Yn+1 = Yn + ynAt

Tyl = Ip 9)
yn+1 - yn
©n+1 = Pn

4.3.3.1 Target localization In the perception system, it is important to
locate the moving road user on the road that is assumed to be flat. The position
on the road surface is z = 0. The main function of the calibration described
in the sections 4.2.1 and 4.2.2is to map the image reference frame into the ENU
frame. The YOLO detector’s output is the target’s bounding boxes in the image
reference frame and the objectness that quantifies how likely it is for a bounding
box to contain an object, as first defined by [5]. If the detected target has a
objectness higher than a threshold, we used the mid point in image coordinates
frame of the bottom segment of the bounding box as the target’s location (u, v) and
map it into the ENU frame (z,y, z = 0) as shown in figure25. We can notice here
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Figure 25: The mid point of the bounding box bottom segment is mapped into
the ENU coordinates frame, (z,y,z = 0).

that the position estimation is sensitive to the bounding box and how it surrounds
the moving object. However, during how test, the mid point of the bottom of the
bounding box was the best point to estimate the object’s position.

4.3.3.2 Target classification The classification of the target is an important
information for the autonomous vehicles. Indeed, the identity of the road user wil
provide important information about approximately how large it is, how long it is
and how fast it can move without any measurement. In the perception system, we
used Yolo v3 that learnt the COCO database [18]. In this data base , more than
80 classes are learned and the useful classes for our applications are:

o person as pedestrian with the label 0
e bicyle with the label 1

o car with the label 2

« motorbike withe the label 3

e bus with the label 5

o truck with the label 7

We can also extend this list with traffic lights(label 9) and stop signs(label 11) or
dogs (label 16) that can be detected in a road scene.
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| model | length/width |
Renault Koleos 4535mm/1900mm
Renault Zoe 2020 | 4087mm/1730mm
BMW coupe serie 2 | 4432mm/1774mm

Volvo S60 4761mm/1850mm
Volkswagen Golf SW | 4567mm/1799mm
| Truck’s volume | length /width /height |

10m? to12m? | 5900mm/1900mm/2400mm
20m? to 23m? | 7000mm/2200mm/2700mm
30m? to 40m? | 8000mm/2300mm /3200mm
50m? 10000mm /2500mm /3800mm
80m? to 100m? | 18500mm/2600mm /3800mm

Table 5: Table: Dimension of personal car and truck

4.3.3.3 Target’s yaw angle The vehicle yaw angle is another important information
that can help the CAV to make decisions in a junction. The yaw angle provides
information to predict future trajectory of the vehicle. In a roundabout, it is
important to predict if a vehicle is about to exit the roundabout. With a mono
camera system, the yaw angle is difficult to be estimated because the 3D information

is not available. To estimate the yaw angle, we proposed two approaches:

o the first one, can be used the a very general situation where the bounding
box of the vehicle and the vehicle class is available.

o The second one, is a more faster and it is dedicated to the track vehicle in a
roundabout.

The first approach is based on the idea that the same kind of vehicle have approximately
the same dimension. The following tables is showing the dimension for personal car
and trucks. The dimensions of the personal car are quite homogeneous where the

length is in the majority less than 5m and the width is approximately 1.8m. The
approximation made here is quite good for the a camera system whose accuracy
is more than 10cm. The trucks dimensions show more disparity in length and in
width. It will be difficult to classify the smallest trucks and the biggest personal
cars. The buses is a vehicle class that usually has well-defined dimension in France.
The classical model has a length of 12m and the width is 2.50m. The articulated
version is longer with 18m.

Assuming the length and the width is constant for a given vehicle category,
the width of the bounding box can be used to estimate the yaw angle. We project
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/~ the ENU coordinates frame

Figure 26: When the vehicle is seen in its side view, the bounding box’s width is
the vehicle’s length. When the vehicle is seen with other angle , the bounding box
is shorter. The yaw angle can be computed if the vehicle’s length is given and if
the angles «, i, 61, 09, 03,shown in the figure, are available.

the bounding box into the ENU coordinates frame. The bottom border of the
bounding box in the ENU coordinates frame is the location of one point of the
vehicle that is the closest point to the camera. Let ¢ be the yaw angle. We are
measuring the yaw angle as the angle between the E axis and the heading of the
vehicle. The estimation of ¢ is a geometrical problem as shown in the figure 26.
Once the bounding box is mapped into the ENU coordinates frame, the position
of the points A = (z,,y,) and B = (xp,y,) shown in the figure 26 is known and
with the camera position cam = (z.,y.), we have the three equations of the lines

(cam, A), (cam, B) and (A, B):

y=amz+b (A D)
Yy = asx + by (cam,B) (10)
y =azx +bs (cam, A)

Thus,
01 = atan(ay)

0y = atan(az) (11)
05 = atan(as)

Let AB = L', = AC. Looking at the figure 26, we claim thata = 7 + 65 —
f;. We also assumed that the vehicle width w is known as soon as the vehicle
is well classified. Following the sines law, u = arcsm()\%w)) and ¢ = 03 +

20



arcsm(/\smT@) -

problem:

5. We estimate the yaw angle by solving the simple optimization

A= argmmke[ ] T Ya + (agxq + ba) — A (sin(0y) — agcos (01))

L (a23m(03 + arcsin (’\5%@)) + cos(03 + arcsin (A"”%(O‘)))) (12)

The optimization is a convex problem and A is defined in a bounded interval.
Thus, the global minimum may not exist in the interval when the assumed vehicle
length is wrong. The difficulty in this problem is to keep A inside the interval
while we need a fast convergence. One fast algorithm is the Newton-Raphson’s
(NR) method but it is difficult to keep A inside the interval. We combine NR
method with a gradient descent by checking the loss function: if the value of the
loss function is small enough with a high derivative or if A is close to Si;‘éa), we
switch the NR algorithm to the gradient descent instead of NR with a small step
size. If the gradient descent does not converge to 0 and X is close to ﬁ@ , We
stop the search because no solution exists. The length assumption is wrong in
that case. The loss function in the equationl2is different if the closest point to
the camera C' is close to B instead of A. But this is not the problem because C’s
position depends on the position of the vehicle on the roundabout. In the figure27,
we show the map we use to determine if C' is near the corner A or the corner B.

The second approach is based on the vehicle position(x,y)in the roundabout
and the vehicle is far from an exit of roundabout. We also assume that the
roundabout is circular with the center cen = (z.,y.). At this position, the vehicle

is tangent to the cercle of cen with the radius r = \/(x — )+ (v — o)’

In the Tornado perception system, both approaches are used. When the vehicle
is in the blue area where it cannot exit and won’t change its trajectory, the second
approach is used because it is faster. Otherwise, the first approach is used . In the
figure 27, in purple area, the vehicle has choice to exit or to stay in the roundabout.
In this area, the first approach is better.

4.3.3.4 Target’s speed The vehicle speed estimation is one hard task for the
mono-camera based perception system developed in the Tornado project because
the detection and tracking algorithm must run very fast to broadcast the information
in real time. The speed computation is based on the vehicle detection and tracking.
The better is the target modeling the more accurate will be the speed estimation.
Currently, the speed estimation is based on the tracking of two image frame with
a Kalman filter as it is mentioned in beginning of this section. The speed is first
estimated by using positions of the targets measured in two consecutive frames:
G, = Tn=fn=1 Yn—Yn—1

A~ and g, = 7=, As expected, the result is very noisy with very

significant differences between two consecutive values. Kalman filtering allows the
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Figure 27: Roundabout in Rambouillet. In the blue area, the vehicle’s yaw angle
is deduced from the only information of the position. In the red and yellow area,
the point C' is close to the corner A.(fig 26). When the vehicle is in the purple
area, it can exit or stay in the roundabout. The point C'is close to the corner B.

calculations to be smoothed and to obtain more realistic values. The result before
and after the Kalman filter processing is shown in figure 28. In this figure, we
compare the result with the RTK GPS measurement acquired during the on field
experimentation as it is presented in the section 4.4.

4.3.3.5 Target’s information broadcast by the Road Side Unit The
traffic information is broadcast using the RSU by LACROIX City. The RSU
allows 255 perceived object and perceived targets information are sent to the RSU
using the Collective Perception Message’s (CPM) perceived object container. As
the technical report [2] suggests, the position and the occupied space of the target
are derived from the so-called object reference point, yaw angle, vehicle’s length
and vehicle’s width. We show the object reference point in the figure 29.

4.4 experimentation

The roadside camera based perception system is evaluated using an instrumented
vehicle equipped with a RTK GPS installed near the rear axle of the vehicle in the
roundabout of the experimentation and demonstration site of the Tornado project
at the commercial area of Rambouillet. The vehicle provides accurate positioning
and yaw angle. Our evaluation aims to evaluate the accuracy of the estimated
target’s position, the vehicle yaw angle and target’s speed in the field of view
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Figure 28: The raw speed components provide quite good global variation of the
vehicle’s speed (a) is the E axis component and (b) is the N axis component. The
estimation is improved by the Kalman filter as shown in (c¢) and (d)

Figure 29: The object reference point.
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Figure 30: The experimentation site is a large roundabout. We need two
perception systems to cover the roundabout. CAMI1 is at 54m of the center and
CAM2 is at 55m.

of the camera and finally we measure the duration from the image acquisition
to the information broadcasting. The roundabout is a large infrastructure. Its
central island’s diameter is 26.7m. To cover entirely the roundabout, we install
two systems: the first, called CAM]I, is installed in the north side at 54m of the
center of the roundabout and the second, CAM2, is installed in the south side at
55m of the center. The figure 30 is the illustration of the experimentation site. To
evaluate the algorithms of the system, the measurements were acquired in the north
of the roundabout where CAM2 is located. The instrumented vehicle made several
passages in the roundabout and in the avenue which enters into this roundabout
in the north side of the roundabout. The evaluation of each component of our
perception system (estimation of vehicle position, estimation of the yaw angle and
vehicle speed) was carried out as follows:

1. The sequences of images acquired during the experiments with the instrumented

vehicle are processed by the perception system.

2. In the processed sequences, the instrumented vehicle was perfectly detected
and tracked. By hand, we identified the labels of the targets corresponding to
the instrumented vehicle. There are several labels, because for two different
passes in the field of view of the camera, we have two different labels because
the system did not re-identify targets.

3. The results concerning the instrumented vehicle are then adjusted temporally
with the measurements of the RTK GPS installed inside the vehicle.

4. Finally, we calculate the mean errors between the results of the perception
system with the ground truth, the standard deviation for every position of
the vehicle in the roundabout.
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4.4.0.1 Target’s position and yaw angle The GPS receiver installed inside
the instrumented vehicle is not visible by the camera, we must estimate its position
once the yaw angle and the object reference point’s position are calculated. The
estimated position of the GPS receiver is compared to RTK GPS measurement.
The instrumented vehicle is moving in the roundabout several time and data are
acquired by both the system CAM2 and the GPS receiver in the vehicle. As we
are expected that the accuracy of the measurement depends on the position of
the vehicle, we computed locally the accuracy mean and standard deviation in
different area of the roundabout: for every position (z,y) in the field of view of
the CAM2, we compute the mean and the standard deviation in the square area
from (z — A,y — A) to (z + A,y + A). The mean position error on the Est
axis and on the N axis is shown in the figure 31. As we can notice the position
in East axis is more accurate than the position in the North axis. In the East
axis, the mean error is close to 15¢m to more than 1m in the worse cases mainly
due to the occlusions of tree’s leaves. And for the North axis, the measurements
are less accurate. We explain this by the fact that the instrumented vehicle are
often seen behind another vehicles, the y position can not be measured accurately
because the BBox is a smaller. We can notice that usually the error is less than
30cm. However, some error larger than 50cm are observed when the instrumented
car is occluded The yaw angle provided by the perception system is in radian.
In our system, the yaw angle is computed using the approach presented in the
section 4.3.3. The figure 32 shows the result of the comparison between yaw angle
computed by our system and the measurement provided by the instrumented car.
The error of the yaw angle estimation by the camera is less than 0.4rad in most
case except in a few localized spots near the tree or near the roundabout’s exit
where one can observe slowing down vehicles.

4.5 Real-time evaluation

As we already mentioned, a automatic driving application must provide information
with only a very short delay. In the Tornado project, the objective is to broadcast
information with delay as short as 0.1s. During the evaluation, the processing time
(Detection and tracking and CPM sending) is 0.0769 second (13hz) when only few
vehicles are in the roundabout. When the roundabout is busy, the processing
time is can increase to 0.09 second (11Hz). However, we notice that there is a
significant delay that comes from the images acquisition. To measure the time
needed to produce the image, we took images of the GPS clock and we compare
the date shown in the image and the timestamp of the image provided by the
camera taht is also synchronized to the GPS clock using NTP server. As it is
illustrated in the figure 33, there is a difference close to 0.1 second between the
time shown in the image and the timestamp by the camera. In the example shown
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(b)

Figure 31: (a) The mean error of the vehicle’s position depends on the position
of the vehicle. We notice that the mean error is more significant in the North axis
(y). (b) The standard deviation is also more significant in the same axis. For the
sake readability, Te unit of the scale is the centimeter(cm) for the mean error and
the decimeter(dm) for the standard deviation.
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Figure 32: The error of the yaw angle estimation by the camera is less than 0.4rad
in most case except in a few localized spots near the tree or near the roundabout
exit.

in the figure 33, the timestamp is 2020 — 09 — 28at14h53m?26.254s. Thus, we are
facing a hardware problem. We have to use a suitable camera with a delay much
shorter than 0.1 second. Unfortunately, this issue was noticed late in our research
work and we still not test other camera models to find the suitable camera for our
application.
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Figure 33: The error of the yaw angle estimation by the camera is less than 0.4rad
in most case except in a few localized spots near the tree or near the roundabout

exit.

5 Narrow zone passage use case

5.1 Use Case Description

The main goal of the "narrow zone passage' use case is to help the autonomous
vehicle to cross a narrow zone with no visibility of the vehicles coming in the
opposite direction. The use case takes place under a railway bridge on Route de

Bray in Rambouillet, see Figures 34 and 35.

Figure 34: Narrow Zone - View 1
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Figure 35: Narrow Zone - View 2

5.2 Equipments
5.2.1 Connected Millenium Traffic Lights

For this use case, we have used two LACROIX City Millenium Portable Traffic
Lights, placed on both sides of the bridge. It is an optimal portable traffic sign
solution for worksite traffic control. The Millennium worksite traffic light is entirely
designed to facilitate setting up a worksite. On this Traffic Lights we have added
a RoadSide Unit (RSU), which allows to send MAPEM and SPATEM messages
(see paragraph 3.5 and paragraph 3.6) that announces the topology of the zone
and the traffic light status (current phase and date of next phase change). This
information are sent using the I'TS-G5 technology, see paragraph 3.2.

5.2.2 OBU embedded in a Zoe Car

For this use case, we have also used a LACROIX City V2X On-Board Unit
(OBU), embedded in a Renault Zoe vehicle. The OBU receives the MAPEM
and SPATEM messages (see paragraph 3.5 and paragraph 3.6) using ITS-G5
technology (see paragraph 3.2). The content of this message is made available
through an API provided by LACROIX City, based on Websocket or HT'TP REST.
The information of topology and traffic lights status is an input for an algorithm
embedded in Renault Zoe vehicle, that allows the autonomous vehicle to decide
whether or not it can cross the narrow zone passage.
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Figure 36: Renault Zoe in front of a Millenium connected traffic light

6 Conclusion

This document reports the works on collaborative roadside perception system
carried out in work package 6 of the Tornado project. In this project, several
identified use cases need collaborative roadside perception: a narrow passage
under a bridge with poor visibility, a crossing of a roundabout and a perception
assistance to an autonomous shuttle in a shared space. The roadside collaborative
is based on two technologies: the sensor and the V2X technology. For the V2X
communication, the ETSI recommendations on the collaborative perception is
used. The information are broadcast at 10Hz for CPM and 1Hz for CAM, SPATEM
and MAPEM using the RSU and OBU by LACROIX City, The proposed roadside
perception system is based on a camera and images are processed by YOLOV3
for the road users detection and a multi-object tracking system to track targets,
to estimate yaw angle and target’s speed. The perception system is evaluated on
the experimentation site in the Bel-Air business area. To evaluate the perception
system, an instrumented vehicle with RTK GPS passed several time on the roundabout.
And ground truth are acquired with the RTK-GPS. The measurement are: the
vehicle position, the vehicle yaw angle and the speed. In the section 4.4, we show
that vehicle’s positions are globally estimated with mean error less than 20cm
(East axis). The few part of the roundabout with mean error more than 25c¢m
up to 1m is due to occlusions by trees or cars (North axis). Depending on the
position of the vehicle, the yaw angle is estimated with an average error ranging
from 0.4rad to less than 0.8rad. The vehicle’s speed estimation is really difficult
only using mono-camera. However, the Kalman filter improved the estimation by
smoothing the values. Finally, we assess the system’s ability to deliver results in
real time by measuring the time from image creation to data broadcasting. The
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average duration observed on the processing is 0.17s per image with 0.1s used for
the creation of the image by the camera and only 0.7s for the target detection and
the tracking.
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