

Financé par

Pôles de labellisation

Lot1 : Plateforme

d’intégration système

L1.3 : System Architecture
Programme FUI23

Référence L1.3

Version 0.1

Date 04 / 12 / 2018

Porteur UPPA

Auteur(s) TBD

Contributeurs(s) RT, Renault, INRIA, UPPA,

IFFSTAR, Exoskill, Institut Pascal,

UTC, Easymile

i

Authors

Name Entity Email

Arunkumar Ramaswamy Renault arunkumar.ramaswamy@renault.com

Ernesto Exposito UPPA Ernesto.exposito@univ-pau.fr

Sven Salomon EasyMile sven.salomon@easymile.com

Document History

Version Update Date Subject Changes Author

0.1 Initial draft

L1.3 | Logical Architecture

Table of Contents

1 Introduction .. 1

2 Functional Architecture ... 1

3 Logical Architecture .. 2

3.1 Interface Diagram .. 3

3.2 State Diagram ... 5

4 Conclusion ... 6

5 Appendix .. 7

Table of Figures

Figure 1 - Arcadia System Engineering Phases .. 1

Figure 2 - AMODS system with external actors ... 1

Figure 3 - AMODS System Functional Decomposition Diagram .. 2

Figure 4 - Tornado system overview ... 2

Figure 5 - AMODS System Internal Interface Diagram .. 3

Figure 6 - Data structure of V2X Traffic Light data .. 3

Figure 7 - Example Interface between RSP and Mobile Application 5

Figure 8 - Vehicle state diagram (Fleet Management-Centric view) 5

Figure 9 - Vehicle state maintained by C4 for Renault Vehicle .. 6

L1.3 | Logical Architecture

Projet Tornado 1

1 Introduction

Autonomous vehicles are complex systems, their deployment involves multiple stakeholders. A

systematic system engineering approach is needed to deploy operational level-4 autonomous

vehicles. This document presents the results from the ‘System Need Analysis’ and the ‘Logical

Architecture’ phase of the Arcadia methodology. The purpose of System needs Analysis (SA) is to

define the contribution expected of the system to users’ needs, as they are described in the

previous Operational Analysis (OA). The Logical Architecture (LA), which in our case can be called

as ‘Software Architecture’, implements the big decisions of the solution, in terms of principles of

construction, and ways to fulfill the expectations of stakeholders; it is then formalized by means of

a decomposition into abstract components, namely principles of behavior and interface diagrams,

etc.

Figure 1 - Arcadia System Engineering Phases

2 Functional Architecture

Figure 2 - AMODS system with external actors

Operational
Analysis

• Stakeholder
need and
Operational
Design Domain

• No system
boundaries

System Need
Analysis

• Functional
Architecture
(based on
system needs)

• System as a
black box.

Logical
Architecture

• Software
Architecture

• Final Functional
Architecture

• Interface
Specification

• System as a
white box

Physical
Architecture

• Deployment
Architecture

• Hardware
configuration

• Communication
means

L1.3 | Logical Architecture

Projet Tornado 2

The main decision that is made in the SA phase is defining the boundary of the system and

identification of external actors. Figure 2 shows the Autonomous Mobility On-Demand System

(AMODS) with external actors. In this phase, the analysis is intended to define the essential

characteristics necessary for the fulfillment of each operational capability from OA phase, to study

different alternative orientations likely to satisfy these required capabilities. At the SA phase, the

system functions are decomposed as shown in Figure 3Figure 2 - AMODS system with external

actors.

Figure 3 - AMODS System Functional Decomposition Diagram

3 Logical Architecture

Figure 4 illustrates the interaction between different vehicle providers and service providers. The

AD vehicles communicate to the Ride Sourcing Provider (RSP) which does the management of

fleet. The mobile application interacts with RSP for sending the mission for interacting with the

passenger.

Figure 4 - Tornado system overview

L1.3 | Logical Architecture

Projet Tornado 3

3.1 Interface Diagram

The system discussed in previous section is shown as formal interface diagram in Figure 5. The

infrastructure communication with the vehicle is defined in V2X_Interface. Currently only the data

structure for traffic light communication is defined as shown in Figure 6.

Figure 5 - AMODS System Internal Interface Diagram

L1.3 | Logical Architecture

Projet Tornado 4

Figure 6 - Data structure of V2X Traffic Light data

The interface between RSP and Vehicle is defined by C4_RSP Interface (for Renault vehicle) and

Vehicle_RSP Interface for other AD vehicle providers. The structure of C4_RSP Interface is shown

in Table 1. The main function is c4MissionSet for sending the mission to the vehicle and

c4VehicleTrackingGet for tracking the status of the vehicle. A very detailed specification of this

interface is provided as a separate document [1-3]. In order to facilitate the development of fleet

management software without access to real AD vehicle, a cloud-based vehicle simulator is also

developed [4].

Table 1 - Renault C4 - EasyMile RSP Interface

Function name Parameters Description

c4StopListGet RETURN - stopList [1..*] : Stop
EXCEPTION - errorMsg [1..1] :
ERROR_MESSAGE

To get the details regarding stop
locations servicable by the vehicle

c4FleetTrackingGet RETURN - vehicleStatusList [1..*] :
VehicleStatus
EXCEPTION - errorMsg [1..1] :
ERROR_MESSAGE

To get the status of all the
vehicles in the fleet.

c4VehicleTrackingGet IN - vehicleID [1..1] : String
RETURN - vehicleStatus [1..1] : VehicleStatus
EXCEPTION - errorMsg [1..1] :
ERROR_MESSAGE

To get the status of a specific
vehicle in the fleet.

c4MissionSet IN - vehicleID [1..1] : String
IN - stopID [1..1] : String
IN - location [1..1] : Position
RETURN - missionAcknowledgement [1..1] :
MISSION_ACKNOWLEDGEMENT
EXCEPTION - errorMsg [1..1] :
ERROR_MESSAGE

To send a mission to the vehicle.
stopID is mandatory. location is
optional and is reserved for future
use cases.

L1.3 | Logical Architecture

Projet Tornado 5

c4TripSet IN - vehicleID [1..1] : String
IN - tripID [1..1] : String
RETURN - acknowledgement [1..1] :
TRIP_ACKNOWLEDGEMENT
EXCEPTION - erroMsg [1..1] :
ERROR_MESSAGE

To send a trip to the vehicle. (To
be implemented in later stage)

 The interface between RSP and Mobile application is defined in Figure 7.

Figure 7 - Example Interface between RSP and Mobile Application

3.2 State Diagram

Figure 8 shows the state machine diagram that must be followed by each AD vehicle provider. It

ensures the coherency of mission management by the fleet management provider.

Figure 8 - Vehicle state diagram (Fleet Management-Centric view)

For the case of Renault vehicle, there fleet management provider have no direct communication

with the vehicle but to C4 system. Hence this state machine is maintained by the C4 System.

L1.3 | Logical Architecture

Projet Tornado 6

The state machine diagram shown in Figure 9 details different vehicle states maintained by C4.

The availabilityStatus indicate if the vehicle can accept a mission or not. The vehicle can stop at

predefined stop locations only. We assume that the vehicle can be parked (or stopped for longer

periods) only at stop locations where parking is capable. In normal conditions, the availabilityStatus

shall be UNAVAILABLE while the vehicle is in parking location due to the technical constraints of

the vehicle.

Figure 9 - Vehicle state maintained by C4 for Renault Vehicle

When the vehicle accepts a mission while in parking location, the vehicleState is changed from

PARKED to ON_MISSION. If the destination stop is parkingCapable, the state variables after

reaching the destination will be arrivalStatus = ARRIVED, vehicleState = PARKED. If the

destination is not parkingCapable, the state variables after reaching the destination will be

availabilityStatus = AVAILABLE, arrivalStatus = ARRIVED, vehicleState = ON_MISSION. It is to

be noted that vehicleState is still ON_MISSION because an AD Vehicle could not be left

‘unserviced’ while it is in a stop location where parking is not possible. It is the responsibility of RSP

to make sure the AD vehicle is parked at a parking capable location when the service of AD vehicle

is no longer required. Hence the term ‘mission’ is with respect to the vehicle not with the provider.

The vehicleState is changed to PARKED from ON_MISSION when it reaches the parking capable

location. However, it is up to the RSP whether to send the vehicle to the parking location or to

another a stop depending on the requirement. Therefore, ON_MISSION state cannot be bound to

a specific trip or passenger.

4 Conclusion

The analysis or an architecture definition cannot be performed once, in a linear fashion. Most of

the time, reflection will be gradually constructed, including increasingly more detailed reflection

states (iterative approach), and/or a gradual extension of concepts to be considered, starting with

L1.3 | Logical Architecture

Projet Tornado 7

the most important and critical, then expanding to the full required specification. In this deliverable

a very high-level of architecture definition is provided in order to consolidate the system functions

and standardize the interfaces.

5 Appendix

1. Renault C4 – RSP Interface Specification Document: https://cloud.tornado-

mobility.com/index.php/s/tNO82PKcFUOBvKp

2. Renault C4 Webservice Release Notes: https://cloud.tornado-

mobility.com/index.php/s/uVNtfcj7KJNmS8t

3. Renault C4 API Reference: https://cloud.tornado-

mobility.com/index.php/s/B2RyDz4wtZC1V0F

4. Renault Cloud Simulator: https://cloud.tornado-

mobility.com/index.php/s/RNX99ToVbFfU5hL

https://cloud.tornado-mobility.com/index.php/s/tNO82PKcFUOBvKp
https://cloud.tornado-mobility.com/index.php/s/tNO82PKcFUOBvKp
https://cloud.tornado-mobility.com/index.php/s/uVNtfcj7KJNmS8t
https://cloud.tornado-mobility.com/index.php/s/uVNtfcj7KJNmS8t
https://cloud.tornado-mobility.com/index.php/s/B2RyDz4wtZC1V0F
https://cloud.tornado-mobility.com/index.php/s/B2RyDz4wtZC1V0F
https://cloud.tornado-mobility.com/index.php/s/RNX99ToVbFfU5hL
https://cloud.tornado-mobility.com/index.php/s/RNX99ToVbFfU5hL

