

Financé par

Pôles de labellisation

Lot1 : Plateforme

d’intégration système

L1.1 : Description de méthodologie
Programme FUI23

Référence L1.1

Version 0.9

Date 15 / 09 / 2017

Porteur UPPA

Auteur(s) TBD

Contributeurs(s) RT, Renault, INRIA, UPPA,

IFFSTAR, Exoskill, Institut Pascal,

UTC, Easymile

i

Authors

Name Entity Email

Arunkumar Ramaswamy Renault arunkumar.ramaswamy@renault.com

Ernesto Exposito UPPA Ernesto.exposito@univ-pau.fr

Matthieu Carre UPPA/Renault

Document History

Version Update Date Subject Changes Author

0.1 Initial draft

L1.1 |Description of Methodology

Table of Contents

1 Introduction .. 1

1.1 Scope .. 1

2 System Engineering Methodology .. 2

2.1 Standard system engineering methods. .. 2

2.1.1 Unified Modeling Language ... 3

2.1.2 UML-based methodology ... 3

2.1.3 Study case ... 8

2.2 Arcadia Method ... 21

3 Modeling Languages .. 28

4 Tools .. 29

4.1 System Engineering Tool - Capella Workbench... 29

4.2 Software Development Tools ... 30

5 Recommendations.. 31

5.1 Use Case Format .. 31

6 Summary .. 32

7 References ... 32

Table of Figures

Figure 1: Arcadia Methodology ... 21

Figure 2: An example of operational architecture for a chat system 22

Figure 3: Sequence diagram specifying the interaction between operational entities 23

Figure 4: Mission and Capabilities diagram ... 24

Figure 5: System architecture of the chat system .. 24

Figure 6: External interface diagram of the chat system .. 25

Figure 7: System interaction scenario for Connection capability .. 25

Figure 8: System interaction scenario for Send Message capability 25

Figure 9: Class diagram showing operations involved in different interfaces 26

L1.1 |Description of Methodology

Figure 10: Detailed interface diagram illustrating provided and required interfaces of the chat

system. ... 26

Figure 11: Logical functions breakdown diagram .. 27

Figure 12: Logical architecture of the chat system .. 27

Figure 14: The three pillars of MBSE with ARCADIA/Capella .. 29

L1.1 |Description of Methodology

Projet Tornado

 1

1 Introduction

In the area of software engineering process, several methodologies have been proposed in

order to efficiently support the process of analysis, design and development of complex

systems. Unified Process (UP) methodologies are very well known in the world of software

engineering for providing an efficient process based on an incremental and iterative sequence

of phases.

Phases include analysis and specification of requirements, design and specification of the

system solution and implementation, test, integration and deployment of the final product.

These phases are planned and executed in incremental iterations where in each increment

new customer requirements can be added within the process. Likewise, bugs detection and

corrections as well as requirements change requests can be added for each iteration. As

agreed in the software management plan, stable or experimental software products can be

released at the end of the iterations.

The UP methodology has been specialized in order to extend it and adapt it to particular

contexts, including specificities of the software products to be developed as well as the skill

and knowledge shared by the member teams participating in the process. Examples of these

specializations are Rational Unified Process, Enterprise Unified Process, Extreme Unified

Process, Agile Unified Process, etc.

The specialization of standard and generic model-driven software engineering methodologies

is required when designing complex cyber physical systems. In particular, engineering mobility

services using Automated Vehicles (AV) requires more than the existence of robust software

modules, understanding of algorithms, on-board sensors and functional components in

vehicle. It requires a reference architecture and a systematic engineering methodology to

populate that architecture (Albus, et al., 2002). A well-defined system engineering

methodology helps in analyzing and eliciting system needs and required functionality early in the

development cycle, documenting requirements, then proceeding with design synthesis and system

validation whilst ensuring that the proposed autonomous capabilities of the vehicle are

achieved. A successful development of an operational AV system will rely on an effective

approach to system engineering that results in a finite definition of mission requirements and

a clear description of component functionality (Durrant-Whyte, 2001).

1.1 Scope

The purpose of this document is to detail the adopted methodological framework and software

tools in Tornado project that ensures the development of various functions and systems, and

their convergence towards the desired project objectives. The deployment of AV services is

a complex system of systems problem. Compliance with different technical and deployment

needs is necessary to achieve success. Moreover, all the functions of a vehicle must work

correctly and in time for a vehicle to navigate autonomously.

L1.1 |Description of Methodology

Projet Tornado

 2

2 System Engineering Methodology

As Autonomous Vehicles (AV) vehicles become more complex, with ever increasing number

of onboard sensors, faster data rates and even machine learning, so the process of

development, system integration, and testing is becoming more challenging. Also, the

regulatory organizations are requiring the producers to demonstrate that their system are

safer, both for users and bystanders, hence this process is becoming an integral part of their

development. In the system engineering perspective, the key enablers for the efficient system

development of autonomous vehicles are a robust reference architecture based on a formal

methodology, domain-specific verification and validation approaches, effective simulation

environment, and the use of efficient tools and integrated development environment. AD

systems are subjected to increasingly higher constraints regarding safety, security,

performance, environment, human factors, etc. Each of these constraints are under the

responsibility of different stakeholders which deeply influences the systems architectural

design and development process. They are to be integrated and reconciled in a systematic

way. In Tornado project, we adopt a Model-Based System Engineering (MBSE) method called

Arcadia for system and software architectural design. The following section discusses

2.1 Standard system engineering methods.

A system engineering methodology defines the steps required to efficiently specify, design

and develop a software-driven solution. One of the most mature and well-known software

engineering processes is the Unified Software Development Process or USDP [Jacobson 99].

USDP or UP was introduced as a standard process for creating software products based on

the use of the Unified Modeling Language (UML).

USDP introduces the concept of 4Ps: people, project, product and process. People working

in a software development project collaborate within an adequate workflow based on the

unified process using the common UML notation in order to build and represent the blueprint

of the software product. The process includes all the activities needed to transform user's

requirements into a software system. These activities include project management,

requirements specification, analysis, design, development and testing.

USDP follows a component-based approach. This means that the software system being

developed is based on software components interconnected via well-defined interfaces.

Likewise, object oriented design and development approaches are followed within USDP.

There are three major characteristics differentiating USDP from other approaches:

• Use-case driven: the process is driven by the use cases or functionalities offered

for each external actor (i.e. clients or any external entity interacting with the system).

It means that the process does not consider functionalities that “might be good to

have", but it is driven by the realistic usages of the system. In other words, use

cases drive all the process phases: requirements, design, implementation and test.

L1.1 |Description of Methodology

Projet Tornado

 3

• Architecture centric: during the process the software architecture is constantly

refined including static and dynamic aspects of the system. It means that the form

of the system is built progressively.

• Iterative and incremental process: the transformation of user's requirements into the

software product is performed within an iterative and incremental process. During

this process, the functions and the form of the system are represented by the use

cases and the architecture respectively.

Various adaptations to the Unified Process (UP) have been proposed in the last years. These

adaptations are based on the kind of software system being developed, the organization

involved, competence levels of development teams or the project duration or team size.

Examples of these specializations are Rational Unified Process (RUP), Enterprise Unified

Process (EUP), eXtreme Unified Process (XUP) or Agile Unified Process (AUP). However,

most of the processes used today for designing and developing software systems are

commonly based in the principles proposed by the USDP process.

2.1.1 Unified Modeling Language

The design of complex software products requires the use of an efficient methodology able to

offer advanced functionalities such as structural modeling, detailed behavior description, code

generation and validation capabilities. In the case of the widely used UP process, the Unified

Modeling Language (UML) offers the required expression semantic in order to specify the

different views of a software product, including structural, behavioral, static and dynamic

dimensions.

UML is a visual language for specifying, constructing and documenting the components of

software systems. It is an open standard that has established itself as the common and most

used modeling language for the software and systems development industry.

At the moment of writing this document, the UML 2.5 is the major revision of the Unified

Modeling Language. The Object Management Group (OMG) is the body responsible for the

development of computer industry specifications, including UML [OMG]. The OMG first

standardized UML 1.x in 1997 and has been in charge of the following major versions including

version 1.4 (largely used), version 2.0 (merging UML 1.x with SDL/MSC modeling

specifications) and lastly the 2.5 version. The initial SDL and MSC specifications that are

included in the most recent UML language version, have been largely used for the behavioral

specification of communication protocols.

2.1.2 UML-based methodology

In order to identify the more adapted methodology for our project, a short introduction to an

UML-based methodology will presented in this section. To better understand this

methodology, the UML language will be used to carry out the main phases of analysis, design

and development of a generic study case represented by a Chat communication software.

L1.1 |Description of Methodology

Projet Tornado

 4

We do not intend to completely cover all diagrams and semantics offered by UML in this

document. Instead, we will illustrate the methodology by using a subset of six UML diagrams

during the analysis and design process.

The phases included in this methodology are presented in the following figure:

2.1.2.1 Contextual model

The contextual modeling phase is the initial start point aimed at collecting and understanding

the global environment features, identifying the problems or missing solutions and to initiate

the informal description of the role to be played by the software solution to be developed.

This phase is usually informal and it is carried out based on existing documentation and the

results of discussions with experts, customers and future users of the software product.

2.1.2.2 Specification of requirements

The software requirement specification phase is one crucial step in the software development

process. This phase asks for a clear and accurate specification of the expected functional and

non-functional requirements of the software product. Moreover, this specification should

include a set of achievable technical requirements to be met by the protocol specification.

Requirements collected during this phase needs to be analyzed and validated before starting

the design phase. A common practice for requirement validation consists in describing the

future software behavior and its interactions with the environment, following a black box

approach. Such black box approach consists in describing the use cases scenarios within a

timescale and including the exchange of messages between the external environment (actors)

and the system. This analysis is achieved with a maximum level of abstraction of how the

1) Contextual
Model

(abstraction of real world

and detection of the
problem)

2) Specification
of requirements
(informal description of

solutions and requirements)

3) UML specification

Use cases

diagrams
(services)
•Actors

•Boundary

•Use cases
• (sub-use

cases)

Sequence

diagrams:
(example scenarios

for
functions description)
1. Objects (classes)

2. Messages
(Synchronous: methods
Asynchronous: signals)

Class

diagrams
•Classes

(Active/Passive)

•Attributes
•Methods

•Relationships

Component diagrams
(external interface)

Composite diagrams

(internal architecture):
1,2,3: parts, connectors

Statemachine diagrams
(internal behavior)

Analysis Design

L1.1 |Description of Methodology

Projet Tornado

 5

system operates internally. UML does not offer explicit support to trace system requirements.

However, one specialization of UML named SysML (Systems Modelling Language) has been

proposed to enrich UML by specifying and tracing the functional and non-functional

requirements of the system.

2.1.2.3 UML - SysML specification

Once the context has been modeled and the requirements specified, the UML and SysML

languages can be used to specify the structure and behavior of the system to be developed.

The interactions between the system and its environment can be semi-formally described

using UML diagrams (i.e. use cases and interaction diagrams).

As previously introduced, the requirement specification and the analysis performed on the

system/environment interactions will be used to validate that a common understanding of the

services and functionalities to be provided by the future system has been established. In order

to improve the collaboration and to achieve such common understanding, the UML language

will be used for the communication between the development team members.

Once the semi-formal requirements specification has been validated, the design phase can

be initiated. The design phase will be carried out by following a white box approach. This

approach consists in decomposing the system in components (or sub-systems) able to

collaborate in order to provide the required functionalities. This decomposition will be modeled

using structural diagrams (i.e. class, composite and component diagrams).

Once the decomposition has been specified, the expected requirements should be allocated

between the system components. This allocation will be achieved by refining the interaction

diagrams defined during the requirement analysis phase and by replacing the system with the

sub-set of components that will be involved in the collaboration. Further decompositions can

be performed on the sub-systems in order to identify the lowest level of decomposition (i.e.

elementary components).

The final phase of the design methodology consist in the detailed specification of the system

components via UML behavioral diagrams (i.e. state machine or activity diagrams).

2.1.2.4 UML - SysML diagrams

The Use Case diagrams are intended to visually model the functionality of a system (or sub-

systems) from the point of view of the system environment (actors). In other words, this

diagram allows identifying the actors and the use cases of the system.

Each one of the specified use case involves one or more scenarios that describe how the

system should interact with the actors or another system to achieve a specific business goal

or requirements. These scenarios can be described using interaction diagrams (e.g. sequence

diagrams).

L1.1 |Description of Methodology

Projet Tornado

 6

A sequence diagram describes the order within a time scale of the messages exchanged

between the environment and the system (black box) and/or the system components (white

box) in order to implement a specific service (use case).

Sequence diagrams are very similar to the Message Sequence Chart (MSC) commonly used

in SDL-based specifications of communication protocols.

In a sequence diagram, instances of classes (objects) are modeled as a lifeline (vertical line)

representing their role during the interaction.

The exchanged messages (or signals) are represented by horizontal arrows between the

lifelines.

Class diagrams are intended to describe static views of the classes of objects identified within

the specification and their relationships.

When analyzing and designing a system, performing classification means collecting common

properties and common behavior of objects in order to group them in classes of objects.

For every class, its attributes (i.e. class's properties) and its methods (i.e. class's operations)

need to be specified.

Each attribute is specified by its name, and optionally by its type. Each method is specified by

at least its name, and optionally also with its parameters and return type.

 Several kinds of relationships between classes can be established.

• Inheritance: when objects belonging to a class are considered as too “specific”, a

subclass can be defined, based on the general class of objects and adding

additional properties or replacing the behavior with better-adapted specialized

behavior. Such specialization is specified by establishing an inheritance relationship

starting from the subclass and pointing to the superclass.

o Sometimes two or more classes or super classes can be considered as

presenting common properties asking for defining a more general super

class, however their common behavior is so different that it cannot be

commonly specified for the new super class. In this case, general super

classes named abstract can be specified. Abstract classes are intended to

encapsulate common properties and behavior, but they cannot be used to

directly instantiate objects, as their behavior has not been completely

specified (i.e. at least one operation is abstract).

• Composition and aggregation: when a strong relationship between the whole or the

container and its parts can be identified between classes, a composition relationship

can be established. Sometimes the class part can be shared between various

container classes; in this case the aggregation relationship can be established.

Compositions or aggregations between objects are expected to be preserved during

the whole life of the related objects.

L1.1 |Description of Methodology

Projet Tornado

 7

• Association: when a lighter relationship can be established between classes that

not concern to a whole-part relationship, an association can be established.

Associations will be established between objects during part of the life of the related

objects.

When defining attributes and methods of classes, it is required to specify the adequate visibility

levels:

• Public or “+”: accessible from any external object

• Protected or “#”: accessible from internal components and inherited classes

• Private or “−”: accessible from internal components

• Package (no prefix): accessible from the classes within the same package

Once the class diagrams have been, the next steps for the design will consist in:

• Specifying their external interface using component diagrams

• Specifying their internal structure, how are they composed and connected using the

composite diagrams

• Specifying the internal behavior of active objects using state machine diagrams

Component diagrams are intended to describe an object as a component able to collaborate

with its environments. This kind of diagrams is aimed at specifying how an object is supposed

to communicate with other objects by means of messages grouped in interfaces.

In other words, component diagrams are intended to describe the different communication

points (ports) and the kind of messages or signals being sent and received on these ports.

The signals are commonly grouped in interfaces. When a component is able to process

messages or signals received from another component it means that the component

“implements” or “provides” the interface. If a component is a producer of messages, it means

that the component “requires” the interface.

Component diagrams can be specified as standalone diagrams or as an extension within other

diagrams such as class or composite structure diagrams.

The following are the key elements of component diagrams:

• Required interfaces (OUT): aimed at specifying the messages or signals that will be

produced by the component. This kind of interface describes a dependency

relationship between the component and other components that are supposed to

consume the produced messages.

• Implemented or provided interfaces (IN): aimed at describing the messages or

signals that can be consumed by the component.

L1.1 |Description of Methodology

Projet Tornado

 8

• Ports: intended at specifying the interaction points that can be used to collaborate

with other objects by consuming or producing messages or signals.

The composite structure diagrams are intended to describe the internal structure of a

container class, including its components or parts and the connections and potential

collaborations between these components. The following are the key components of a

composite structure diagram:

• Parts: the components parts specified within a composite structure diagram are

semantically translated as a "composition relationships" between the internal

components and their containers.

o If these parts are supposed to be “shared” with other components, then the

relation is translated as an “aggregation relationship”.

• Ports: the container class can provide ports to receive and send messages in order

to communicate with its environment. These messages or signals can be consumed

or produced by the internal parts using internal ports and implementing or declaring

as “requiring” such interfaces.

• Connectors: lines connecting external and/or internal ports are called "connectors"

and can be uni-directional or bi-directional. Connectors represent communication

channels used to exchange messages via the connected ports and between internal

components or between an internal component and the container and its

environment.

State machine diagrams are intended to describe the internal behavior of active classes by

using a state-oriented specification point of view. A state machine will be considered as being

composed of one or more possible states and a change of state is triggered by a signal or

message reception (or even a timeout or alarm). During the change of state, messages can

be produced and operations executed. In UML 2.X, two notations have been proposed to

specify the internal behavior of active components.

• transition-oriented: suitable for a detailed design based on the SDL language

• state-oriented: more suitable for global and higher abstraction level design

2.1.3 Study case

In order to illustrate the methodology and the use of the UML modeling language, a generic

study case will be developed in this section. We have selected a very basic and well-known

system: a chat application.

2.1.3.1 Chat System requirements specifications

The following is the list of system requirements specification (SRS) of a Peer-to-Peer (P2P)

Chat System applications:

L1.1 |Description of Methodology

Projet Tornado

 9

• This system will allow users to communicate by sending and receiving text messages

using interconnected devices. Optionally, users can also communicate by sending and

receiving files (i.e. pictures, documents, programs, etc).

• Every user uses a username (or nickname) to connect to the chat system.

• When a user connects to the system, the list of the other connected users is presented.

This list includes connected user names and information about their remote system (i.e.

remote host information).

• Only connected users are able to communicate using the chat system functions.

• When any user connects (or log on) or disconnect (or log off), the other users have to be

informed about it.

• When a user wants to communicate with another user (send a message or send a file), he

has to select the remote user from the connected users' list. The message/file to be sent

needs to be indicated. Optionally, a group of connected users could be selected as the

destination.

• When the system receives a message or file targeted to the connected local user, the user

has to be informed about it (i.e. showing the message or an indication about the received

file).

2.1.3.2 UML-based analysis.

Based on the previous requirements, the UML language will be used to analyse the system

that needs to be designed and developed. The analysis is intended to illustrate the interaction

between the external entities (actors) and the systems.

The following is a use case diagram, illustrating the local user and the remote application

actors as well as the use cases describing the main interactions with the Chat System:

L1.1 |Description of Methodology

Projet Tornado

 10

Each use case can be further analysed by describing the sequence of interactions between

the actors and the system.

The next sequence diagram describes the connection use case from the user perspective.

The next sequence diagram describes the connection use case from the remote application

perspective.

L1.1 |Description of Methodology

Projet Tornado

 11

Likewise, the following diagrams describe the disconnection use case from the user and

remote application perspectives.

L1.1 |Description of Methodology

Projet Tornado

 12

Similarly, the sending and receiving messages and files can be described using sequence

diagrams.

Once all the interactions have been analyzed and specified, a black box of the futre system

can be specified using a Class Diagram.

L1.1 |Description of Methodology

Projet Tornado

 13

2.1.3.3 UML-based design.

Based on the previous analysis, the design of the system can be carried out. The first step will

be the decomposition of the system.

The system decomposition is a delicate operation that depends on the designer experience.

In our case we will follow a decomposition pattern based on the identification of boundary and

controller components. Boundary systems are components in charge of the interaction with

the external entities, in our case a Chat GUI (communication with the user) and a Chat Network

Interface (communication with the remote application via the network). Controller components

are in charge of the business logic of the system, in our case a Chat Controller will be specified

to implement all the business functionalities.

The following class diagram extends the analysis class diagram with the internal components

of the system.

This class diagram includes a large number of design elements (including attributes, methods

and relationships) that are the result of the design decisions that are specified using sequence

diagrams.

L1.1 |Description of Methodology

Projet Tornado

 14

The following sequence diagrams, specify the interactions between the internal components
of the system.

For example, the following sequences describe the connection interactions from the user and
remote application perspectives.

L1.1 |Description of Methodology

Projet Tornado

 15

The following sequences describe the disconnection interactions from the user and remote
application perspectives.

L1.1 |Description of Methodology

Projet Tornado

 16

The previous diagrams have described the behavioral design of the Chat System. In the
following composite diagram, the structural design of the system is specified.

L1.1 |Description of Methodology

Projet Tornado

 17

Finally, the following state machine diagrams describe the internal behavior of the system
components.

L1.1 |Description of Methodology

Projet Tornado

 18

L1.1 |Description of Methodology

Projet Tornado

 19

2.1.3.4 Conclusions about the UML-based methodology.

The previous paragraphs have described how UML language can be used within a system

engineering methodology during the analysis and design phases.

Even if UML is a very well recognized and probed language, there is an important drawback

concerning the methodology. Actually, there is no formal methodology that can be easily

followed during all the phases of system engineering. Moreover, the traceability of

requirements cannot be easily carried out. In order to identify the best methodology that could

be followed in our project, in the following section the Arcadia methodology based on a

specialization of the UML language will be presented and analyzed.

L1.1 |Description of Methodology

Projet Tornado

 20

L1.1 |Description of Methodology

Projet Tornado

 21

2.2 Arcadia Method

Arcadia1 (Architecture Analysis & Design Integrated Approach) is a model-based engineering

method for systems, hardware and software architectural design. It promotes a viewpoint-

driven approach and emphasizes a clear distinction between need and solution. It is

essentially a structured engineering method to identify and check the architecture of complex

systems. It promotes collaborative work among all stakeholders during many of the

engineering phases of the system. It allows iterations during the definition phase that help the

architects to converge towards satisfaction of all identified needs. The following sections

explains different steps in Arcadia methodology and the Error! Reference source not found.

illustrates the overall approach.

Figure 1: Arcadia Methodology

2.2.1.1 Operational Need Analysis

The first step focuses on analyzing the customer needs and goals, expected missions and

activities, far beyond system requirements. This analysis aims at ensuring adequate system

definition with respect to its real operational use. The results of this engineering phase mainly

consist of an operational architecture which describes and structures the need in terms of

actors/users, their operational capabilities and activities. It includes operational use scenarios

1 https://polarsys.org/capella/arcadia.html

L1.1 |Description of Methodology

Projet Tornado

 22

with dimensioning parameters, and operational constraints such as safety, security, lifecycle,

etc. Error! Reference source not found. shows an example operation architecture diagram

for an example chat system.

An important diagram at this level is called the operational architecture diagram. It captures

the allocation of operational activities to operational entities. The operational architecture of

chat system has identified four operational entities – User, Chat System, File System, and the

Network. Several operational activities are allocated to these entities as shown in the diagram.

It is to be noted that the boundary of the system will not be defined at this level. Different

scenarios for describing the operational use can be specified at this level using sequence

diagrams. Figure 3 shows a file transfer scenario for the chat system example. The life lines

shown in the sequence diagram is linked to the operational entities identified in the operational

architecture.

Figure 2: An example of operational architecture for a chat system

L1.1 |Description of Methodology

Projet Tornado

 23

Figure 3: Sequence diagram specifying the interaction between operational entities

2.2.1.2 System Need Analysis

The second step focuses on the system itself, specifically to define how it can satisfy the

operational need identified in the previous phase, along with its expected behavior and

qualities. The following elements are created during this step: Functions to be supported and

related exchanges, non-functional constraints (safety, security, etc.), performance allocated

to the system, role sharing and interactions between system and operators, etc. The main

goal at this stage is to check the feasibility of customer requirements (cost, schedule,

technology readiness, etc.) and if necessary, to provide means to renegotiate their content.

The functional need analysis can be completed by an initial system architectural design model

to examine requirements against this architecture and evaluate their cost and consistency.

The boundary of the system and external actors are identified at this level.

The results of this engineering phase mainly consist of system functional need descriptions

(functions, functional chains, scenarios), interoperability and interaction with the users and

external systems (functions, exchanges plus non-functional constraints), and system

requirements. It is to be noted that these two phases, which constitute the first part of

architecture building, specify the subsequent design. Architecture diagrams are used in all

Arcadia engineering phases. Their main goal is to show the allocation of functions onto the

components. The system analysis phase can start with identifying the mission(s) of the system

and several capabilities required for the system to accomplish the mission. Figure 4 shows an

example of Mission and Capabilities diagram (M&C) for the chat system. The capabilities can

L1.1 |Description of Methodology

Projet Tornado

 24

be hierarchically arranged and actor involvement for each capability can also be represented

in such a representation.

Figure 4: Mission and Capabilities diagram

Figure 5 shows the system architecture of the Chat system with clear separation of system

boundaries and external actors. Component exchanges between ChatSystem and external

actors: User and Remote Application is identified in the diagram. Several system functions are

also allocated to these entities. Figure 6 identifies the required and provided interface of the

system. Figure 7 and Figure 8 show the interaction scenario for realizing Connection and Send

Message capability. Such representations identify several operational exchange items

between the system and external actors. For example, there are three operations that have

been identified between ChatSystem and User as shown in Figure 7. These operations are

linked to the interface From User and To User between User and ChatSystem components. A

consolidated view of such operations is shown in Figure 9 and Figure 10.

Figure 5: System architecture of the chat system

L1.1 |Description of Methodology

Projet Tornado

 25

Figure 6: External interface diagram of the chat system

Figure 7: System interaction scenario for Connection capability

Figure 8: System interaction scenario for Send Message capability

L1.1 |Description of Methodology

Projet Tornado

 26

Figure 9: Class diagram showing operations involved in different interfaces

Figure 10: Detailed interface diagram illustrating provided and required interfaces of

the chat system.

2.2.1.3 Logical Architecture

At the logical architecture level, the aim is to build more detailed component level architecture

of the system. With the help of functional and non-functional model from the previous phases,

logical components are built by several decompositions of the system. These logical

components will later form the basis for development/sub-contracting, integration, reuse,

product and configuration management item definitions.

In normal situations, the starting point in this phase is to construct architecture breakdown

diagram to describe the system internal building blocks from a logical point of view. Figure 11

shows logical function breakdown diagram for the chat system. Logical components are

intended to interact with each other to achieve the functional goals of the system. Similar

breakdown diagram is constructed for logical components as well. The resulting logical

L1.1 |Description of Methodology

Projet Tornado

 27

functions are then allocated to appropriate logical components resulting in the logical

architecture of the system. Figure 12 shows the logical architecture of the chat system.

Generally, the results of this engineering phase consist of the selected logical architecture

which is described by components and justified interfaces definition, scenarios, modes and

states, formalization of all viewpoints and the way they are considered in the components

design. Since the architecture must be validated against the need analysis, links with

requirements and operational scenarios are also to be produced.

Figure 11: Logical functions breakdown diagram

Figure 12: Logical architecture of the chat system

L1.1 |Description of Methodology

Projet Tornado

 28

2.2.1.4 Physical Architecture

The fourth step has the same intent as that of logical architecture, except that it defines the

final architecture of the system at this level of engineering. Once this is done the model is

considered ready to develop by lower engineering levels. Therefore, it introduces

rationalization, architectural patterns, new technical services and components, and makes the

logical architecture evolve according to implementation, technical and technological

constraints and choices. The same viewpoint-driven approach as for logical architecture

building is used.

The resulting artifacts of this engineering phase consist of the selected physical architecture

which includes components to be produced, formalization of all viewpoints and the way they

are considered in the components design. Links with requirements and operational scenarios

are also produced.

3 Modeling Languages

This section details the different representations used in different stages of system design.

Corresponding terms used in arcadia method are given in square brackets.

Operational Need Analysis

• Requirement and Use case documents [Textual document]

• Operational architecture [Operational architecture diagram]

• Use case [Sequence Diagram]

 System Need Analysis

• High level system diagram [System architecture diagram]

• System mission/capability diagram [Mission/capability breakdown diagram]

• External interface specification [Class diagram]

• System Interaction [Sequence Diagram]

Logical Architecture Design

• System architecture [Logical architecture diagram]

• Interface specification [Class diagram]

• Functional Scenarios Diagram [Sequence Diagram]

Physical Architecture Design

• Physical Architecture (Allocation to PC, Network Configuration, IP etc) [Physical

Architecture Diagram]

L1.1 |Description of Methodology

Projet Tornado

 29

4 Tools

In the section, we detail different tools to be used for system engineering and for software

development activities.

4.1 System Engineering Tool - Capella Workbench

Capella2 is a model-based engineering solution that provides tooling support for

graphical modeling of systems, hardware or software architectures, in accordance with

the principles and recommendations defined by the Arcadia method. It provides

systems, software and hardware architects with rich methodological guidance relying

on ARCADIA, a comprehensive model-based engineering method:

• Ensure engineering-wide collaboration by sharing the same reference

architecture

• Master the complexity of systems and architectures

• Define the best optimal architectures through trade-off analysis

• Master different engineering levels and traceability with automated transition

and information refinement

Figure 13: The three pillars of MBSE with ARCADIA/Capella

Capella can go further than traditional modeling tools thanks to its knowledge of Arcadia. For

instance, the tool will check that each model element at a given engineering level is realized

by a similar element at the next engineering level. Capella organizes model checking rules in

several categories: integrity, design, completeness, traceability, etc. Architects can define

validation profiles focusing on different aspects. Whenever possible, quick fixes provide fact

and automated solutions.

2 https://polarsys.org/capella/

L1.1 |Description of Methodology

Projet Tornado

 30

4.2 Software Development Tools

The onboard software components in the vehicle will communicate using ROS3 (Robot

Operating System) middleware. ROS is not an operating system in the traditional sense of

process management and scheduling; rather, it provides a structured communications layer

above the host operating systems of a heterogenous computing cluster. ROS provides

libraries and tools to help software developers create robot applications. It provides hardware

abstraction, device drivers, libraries, visualizers, message-passing, and package

management. Therefore, the onboard software components must be use ROS compatible

communication mechanism. Certain software components, particularly the vehicle control

module will use Matlab for the development. More details will be provided in the system

specification and reference architecture description deliverable.

The following table list the tools and their respective versions that is to be used for the project.

Name Category Description Version

Capella System

Engineering

MBSE tool for systems

engineering

1.1.3

ROS Software

Development

Communication

middleware for

software components

Indigo Igloo

Matlab Software

Development

Development of

vehicle control module

2013

Operating System Software

Development

Operating system of

On-board computer

that hosts AD software

14.04.5 LTS (Trusty

Tahr)

Cloud

Infrastructure (TBD)

Software

Development

Deployment of cloud

support systems

--

3 http://www.ros.org/

L1.1 |Description of Methodology

Projet Tornado

 31

5 Recommendations

5.1 Use Case Format

The use cases shall be documented in the following format.

Case Name

Case ID

Short description

Purpose

Rationale

Authors

Driving environment

Vehicle probe type

Sources of Risk

Successful end condition

Failed end condition

Frequency of occurrence

Primary Actor

Secondary Actor(s)

Open issues

Validation

Initial Conditions

Final Conditions

L1.1 |Description of Methodology

Projet Tornado

 32

Comments

6 Summary

This document has presented an introduction to system engineering and it has illustrated the

used of the UML-based and the Arcadia methodologies to analyze and design a basic system.

Based on this study, this document details the adopted methodological framework for system

engineering process that will be used for the project. A detailed explanation on different

engineering phases involved in the Arcadia method is given along with an example of Chat

system. The kind of representations of the resulting artifacts from each level is also provided.

A brief discussion on software frameworks and tools to be used in Tornado project is also

provided.

7 References

Albus, J., Huang, H.-M., Lacaze, A., Schneier, M., Juberts, M., Scott, H., . . . others. (2002).

4d/rcs: A reference model architecture for unmanned vehicle systems version 2.0.

NIST.

Durrant-Whyte, H. (2001). A critical review of the state-of-the-art in autonomous land vehicle

systems and technology. Sandia Report, Sandia National Laboratories, 41.

